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Continuous-Time Probabilistic
Models

1 Summary

This project developed new algorithms for statistical inference in continuous-time probabilistic
models. This report first reviews background on continuous-time models and then covers each of
the research projects and their deliverables. The full details are covered in the technical papers,
included as appendices.

2 Introduction

A continuous-time probabilistic model describes a distribution over a set of events in time. That is,
a sample from this distribution consists of a set of events (whose number is random), where each
event is associated with a real-valued time and (possibly) additional information pertaining to the
event.

For instance, events might be posts in a social network [1, 2, 3, 4], armed conflicts [5, 6, 7],
earthquakes [8], or robot motor or sensor malfunctions [9]. The stochastic model describes the
distribution over the number of events, their times, and additional information (such as location,
type, user).

While a standard probability model describes the probability of an event, possibly conditioned
on other factors, as the time of event can be continuous, continuous-time models describe the
probabilistic rate of an event. A general form is as an intensity function λ(t, ht) where t is the time
and ht is the history of events prior to time t. λ(t, ht) is the instantaneous rate of an event at time
t: the (instantaneous) probability per unit time of an event. If λ is a constant, then the model is
known as a Poisson process: The interarrival time between events is exponentially distributed, and
the events in non-overlapping windows of time are independent. While simple, this model does not
have predictive power.

A wide variety of continuous-time process models have been invented including Poisson-networks
[10], piecewise-constant conditional intensity models [11], continuous-time Bayesian networks [12],
and Hawkes processes [13]. We developed new inference methods for each of the last three, and
will, therefore, describe them in a bit more detail below.

2.1 Markovian Processes

Continuous-time Bayesian networks (CTBNs) are Markovian models. That is, they assume that
the information in the past needed to form the distribution of future events can be summarized by
a “state.” For a CTBN, this state is an assignment of values to variables. A CTBN is an example of
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a continuous-time Markov process (or chain). The distinction is that a CTBN provides a compact
representation of the process when the number of variables is large (as the total number of states
in the system grows exponentially with the number of variables).

The events in a CTBN correspond to changes in the state variables and the function λ is
a function of the state variables only (or the most recent events for each such variable). The
intensity function is piecewise-constant, with changes only at events. This leads to exponential
inter-arrival times between events. Hiding (or masking) certain variables leads to more interesting
non-Markovian behavior over the other variables (if the hidden variables are marginalized out).

There have been a wide variety of inference methods developed for CTBNs including variational
approaches [14, 15], sampling methods [16, 17], and others [18, 19, 20]. The sampling methods
converge (in the limit of infinite samples), but are random algorithms. The other methods are
non-random, but do not converge.

2.2 Piecewise-constant Conditional Intensity Models

Piecewise-constant conditional intensity models (PCIMs) are models in which the function λ(t, ht)
can be described as a decision tree. This causes λ to be a piecewise-constant function (of time) for
any fixed history. The decision nodes in the tree are functions of the history (such as, “were the last
two events both in the past 1 hour?”). This allows for both self-suppression and self-excitation. If
there are multiple types of events (that is, events with different “additional information”), PCIMs
model each with their own tree, but the decisions in one tree can depend upon the history of events
from another tree.

PCIMs have efficient learning algorithms, for building the decision trees from data, when all
events have been observed. They also have efficient forward sampling algorithms: methods for
extending a sample forward in time. The missing piece was being able to sample conditioned on
future data, to answer questions about what might have happened to cause observed events.

2.3 Hawkes Processes

A Hawkes process (HP) [13] (rediscovered as a cascade of Poisson processes [1]) describes the
intensity function, λ as a sum of a base constant rate, plus a contribution for each event in the
past. The contribution of an event ∆t time units ago is captured by a kernel function, φ(∆t) which
is the key ingredient in the HP model.

An HP can describe self-excitatory processes (but not self-inhibitory ones). The rate of an event
is also unbounded, leading it to be a good model for many types of viral models. Prior to this work,
parameter (kernel) estimation methods were known, but all methods assumed that all events were
observed. No one had considered the calculation of posteriors over unobserved historic events.

3 Methods, Assuptions, and Procedures

Our proposal organized the work into two categories: Markovian processes and non-Markovian
processes. For the first two years of the project, we focused mainly on the Markovian processes,
whereas we flipped the focus in the last two years.

3.1 Markovian Processes

A Markovian continuous-time process can be described by a rate matrix, Q, where element qij is
the rate of transitioning from state i to state j. For systems in which a state is an assignment

2
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of values to variables, the size of this matrix grows exponentially with the number of variables.
Continuous-time Bayesian networks (CTBNs) solve this problem by introducing a graph over the
variables to describe which variables immediately influence which others’ transition rates. The
result, much like that for standard Bayesian networks, is that the descriptive space for the model
grows exponentially with the fan-in of the graph, but only linearly with the number of variables.

The key computational operation for reasoning about a Markovian continuous-time system is
the matrix exponential. In particular, to compute the marginal distribution of the state at one time
given its value at a previous time, we need to exponentiate the matrix Q times the time duration.
For a CTBN (or any other compact model), this cannot be done efficiently and exactly, unless
P=NP. As mentioned above, many approximate methods have been developed.

3.2 Piecewise-constant Conditional Intensity Models

Piecewise-constant conditional intensity models (PCIMs) represent the intensity function as a de-
cision tree where the decisions at inner nodes are based on the raw clock time and also the history
of events. As this tree grows, it can approximate a class of ”universal” models [25] and has been
extended to a multiplicative forest model [26, 27].

We have developed new inference methods that allow for hidden, unseen, event types. These
events might represent actions taken by unobserved actors (in a social network, for instance),
abstract change points in the dynamics, or high-level human-described labels. Previously these
types of events have been ignored by non-Markovian models, figuring that the non-Markovian aspect
could account for the patterns in the observed data without the need for unobserved explanations.
We demonstrated the advantage of such unobserved event types in PCIMs and Hawkes processes.

3.3 Hawkes Processes

A Hawkes process is also a non-Markovian process. However, the intensity function is a sum, over
all previous events. This means that its value is unbounded. The method we developed for PCIMs
depended on a finite upper limit to the intensity function. Yet, Hawkes processes have become very
popular in modeling earthquake modeling [8], finance [7, 32], social networks [1, 2, 3, 4], influence
maximization [33], armed conflicts [5, 6, 7], and topic modeling [34, 35, 36]. Therefore, we wished
to develop the first general inference method for Hawkes processes.

While other applications placed priors on the parameters of the Hawkes process or other parts
of the model and used Gibbs sampling (or similar) over these parameters [7, 37], no work to date
has considered unobserved events to the extent that we do in this paper. [38] used mixtures of
Hawkes processes and developed a variational inference method. However, all events were observed;
only their assignments to mixture components were not. [39] considered the situation in which all
events prior to a specific time are unobserved (left censoring), which is a very specific case of
the missingness patterns we allow. Finally, if there are no observed events of any labels and the
process has an exponential kernel, a closed-form solution exists [33] However, no general closed-form
solution is known for the evidence patterns we consider here.

4 Results and Discussion

Our methods above yielded the following new algorithms and results.
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4.1 Markovian Processes

Our work developed the first anytime, convergent, non-random method. Previous sampling methods
were anytime and convergent, but they would give different results each run. Previous non-random
methods did not converge. Our method is based on a decomposition of the matrix exponential into
a series of nested integrals, known as a time-ordered product. It was originally developed in the
context of quantum electrodynamics [21, 22].

While the integrals must be approximated, their approximations can be reused in evaluating
the next, nested, integral. The result is a computation tree which we traverse in a greedy fashion to
build up an answer. The full details and comparisons to previous methods can be found in [23, 24].

In the proposal, an additional method, using ideas from Gibbs sampling, was to be developed.
We worked on this for approximately one year without success. In the meanwhile, we continued
on the work described below and found new avenues for research, not part of the original proposal,
and instead developed those, resulting in the Hawkes process inference method detailed below.

4.2 Piecewise-Constant Conditional Intensity Models

Our inference algorithm permits the reasoning about such missing events and the estimation (learn-
ing) of a model from data that is missing events. The algorithm is a generalization of a previous
Markovian algorithm [28], extending it to the PCIM case.

We used this method to beat state-of-the-art methods in video activity recognition [29, 30, 31].
The PCIM model can capture temporal dependencies between and among event types and visual
features. The result is more adaptive and has better accuracy than existing methods.

4.3 Hawkes Processes

We used a combination of the auxiliary variables (a mathematical technique from our PCIM ap-
proach) with the generational view of Hawkes processes to develop a Markov chain Monte Carlo
sampler for Hawkes processes under the same unobserved event assumptions as the PCIM sampler.
We demonstrated its utility in analyzing city-level crime data to find sociologically known patterns
that were not revealed without the hidden event types [40].

This method was not in the original proposal, but was pursued (with program manager’s
agreement) after initial results on PCIM inference yielded good results and our research into non-
Markovian processes suggested a Hawkes process method would be successful. Further, since the
proposal, Hawkes processes had become more popular and better suited to a number of emerging
applications, including social media tracking.

5 Conclusions

The code for these projects, so that they can be reproduced and built upon, is available through
github on the following projects:

• cshelton/comtope

• cshelton/pcim-plain

• cshelton/hawkesinf

• pierce1987/pcim-dev
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The technical details of these methods and their results on the applications are given the academic
papers attached to this report.

This project almost uniformly achieved the proposal’s goals. In Markov inference, we did not
successfully develop the second set of goals. However, we were able to achieve an unproposed
inference method for Hawkes processes, a model that had become popular since the time of the
proposal. All other proposed research was carried out successfully.
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Tutorial on Structured Continuous-Time Markov Processes

Christian R. Shelton cshelton@cs.ucr.edu

University of California, Riverside

Gianfranco Ciardo ciardo@iastate.edu

Iowa State University

Abstract

A continuous-time Markov process (CTMP) is a collection of variables indexed by
a continuous quantity, time. It obeys the Markov property that the distribution over
a future variable is independent of past variables given the state at the present time.
We introduce continuous-time Markov process representations and algorithms for filtering,
smoothing, expected sufficient statistics calculations, and model estimation, assuming no
prior knowledge of continuous-time processes but some basic knowledge of probability and
statistics. We begin by describing “flat” or unstructured Markov processes and then move
to structured Markov processes (those arising from state spaces consisting of assignments
to variables) including Kronecker, decision-diagram, and continuous-time Bayesian network
representations. We provide the first connection between decision-diagrams and continuous-
time Bayesian networks.

1. Tutorial Goals

This tutorial is intended for readers interested in learning about continuous-time Markov
processes, and in particular compact or structured representations of them. It is assumed
that the reader is familiar with general probability and statistics and has some knowledge
of discrete-time Markov chains and perhaps hidden Markov model algorithms.

While this tutorial deals only with Markovian systems, we do not require that all vari-
ables be observed. Thus, hidden variables can be used to model long-range interactions
among observations. In these models, at any given instant the assignment to all state vari-
ables is sufficient to describe the future evolution of the system. The variables themselves
real-valued (continuous) times. We consider evidence or observations that can be regularly
spaced, irregularly spaced, or continuous over intervals. These evidence patterns can change
by model variable and time.

We deal exclusively with discrete-state continuous-time systems. Real-valued variables
are important in many situations, but to keep the scope manageable, we will not treat them
here. We refer to the work of Särkkä (2006) for a machine-learning-oriented treatment of
filtering and smoothing in such models. The literature on parameter estimation is more
scattered. We will further constrain our discussion to systems with finite states, although
many of the concepts can be extended to countably infinite state systems.

We will be concerned with two main problems: inference and learning (parameter es-
timation). These were chosen as those most familiar to and applicable for researchers in
artificial intelligence. At points we will also discuss the computation of steady-state prop-
erties, especially for model for which most research concentrates on this computation.

c©2014 AI Access Foundation. All rights reserved.
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Shelton & Ciardo

The first section (Section 2) covers the basics of flat (unstructured state-space) continuous-
time Markov processes. The remaining sections discuss compact representations. This tu-
torial’s goal is to make the mathematical foundations clear and lay out the current research
landscape so that more detailed papers can be read more easily.

1.1 Related Models

There are many non-Markov continuous time models. Gaussian processes (Williams, 1998)
are the best-known and model continuous-valued processes. For discrete-valued processes,
most models build upon Poisson processes, or more general marked processes. As a Poisson
process is memoryless, to make an interesting model, researchers usually generalize to allow
the rate of an event to be a function of the process’s history.

Poisson networks (Rajaram, Graepel, & Herbrich, 2005) constrain this function to de-
pend only on the counts of the number of events (possibly of different event types) during
a finite time window. The cascade of Poisson process model (Rajaram et al., 2005) defines
the rate function to be the sum of a kernel applied to each historic event. The kernel has
parameters for the effect of time passing, overall event rate, and chance that one type of
event follows another. Piecewise-constant intensity models (PCIMs) (Gunawardana, Meek,
& Xu, 2012; Parikh, Gunamwardana, & Meek, 2012) define the intensity function as a
decision tree, with internal nodes’ tests drawn from a set of pre-specified binary tests of
the history. Forest-based point processes (Weiss & Page, 2013) extend this by allowing the
intensity function to be the product of a set of functions, each a PCIM-like tree. Didelez
(2008) presents a generalization of the continuous-time Bayesian networks (see Section 5)
to inhomogeneous point processes, but without specific parameterizations or algorithms.

1.2 Why Continuous Time

Contemporary computers are discrete-time computation engines (or at least present a model
of one). Therefore, why would we consider a continuous-time model? The quickest answer is
by analogy: We build models of non-temporal systems employing real-valued variables. The
tools of linear algebra, calculus, and the like allow us to derive and analyze these algorithms
and methods. Yet, in the end they will be implemented on discrete-valued computers with
finite memory and precision. However, we find the abstraction of continuous-valued vari-
ables useful and only make approximations during the final implementation when employing
fixed- or floating-point precision arithmetic.

Similarly, it is productive to treat time as a continuous quantity. It allows us to more
naturally discuss and reason about systems in which

1. Events, measurements, or durations are irregularly spaced,
2. Rates vary by orders of magnitude, or
3. Durations of continuous measurement need to be expressed explicitly.

All of these happen in asynchronous systems. Most dynamic systems of interest are asyn-
chronous: events or measurements (or both) do not occur based on some global clock. Social
networks, phylogenetic trees, and computer system logs are just some examples.

Note that while the underlying system model is continuous-time, observations and mea-
surements of that model need not be continuous. We directly treat discrete-time observa-
tions, both at regular and irregular intervals.
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1.3 Why Not Discrete Time

Clearly for any given continuous-time system specification, some discretization of time val-
ues could be made without introducing too much approximation error. Such a conversion
of time from real-valued to integral makes it mathematically more difficult to be flexible
about how to treat time algorithmically. This makes the development of computationally
efficient algorithms more difficult. For instance, in a discrete-time model, it is natural to
have computations proceed one time “step” at a time. However, for uneventful times, this
can be computationally overly burdensome. With a continuous-time model, because there
is no natural time step, it is simpler to think about methods that can “jump” over such
uneventful time periods. Additionally, there are a few oddities about Markov chains built
by discretizing continuous time. Finally, the full system specification may not be known
when the discretization must be selected (for instance, if parameters must be estimated).

1.3.1 Time Discretization and Markovian-ness

Consider the two-state Markov chain X described by the stochastic matrix1

T 1 =

[
0.75 0.25
0.5 0.5

]
. (1)

The elements of T 1 are the probabilities p(Xt | Xt−1) for each value of Xt and Xt−1. Over
one time unit, the probability of moving from state 1 to state 2 is 0.25, for example.

If T 1 describes a continuous-time system, sampled at a period of 1 time unit, there
should be a matrix T 1/2 describing the same system, sampled at a period of 1

2 time unit
(or twice the sampling rate). Indeed there is:

T 1/2 =

[
0.83 0.17
0.33 0.67

]
. (2)

This can be verified:

P (Xt = j | Xt−1 = i) =
∑

k

P (Xt−1/2 = k | Xt−1 = i)P (Xt = j | Xt−1/2 = k)

T 1(i, j) =
∑

k

T 1/2(i, k)T 1/2(k, j)

T 1 = T 1/2T 1/2 .

That is, T 1/2 is the matrix square root of T 1.
Now take a different two-state Markov chain transition matrix

S1 =

[
0.1 0.9
0.9 0.1

]
(3)

and construct the corresponding transition matrix at half the sampling period, S1/2:

S1/2 =

[
0.5 + .447i 0.5− .447i
0.5 + .447i 0.5− .447i

]
. (4)

1. We will use row-stochastic matrices exclusively in this tutorial. While column-stochastic matrices are
often used for discrete time, row-stochastic matrices are more common in continuous time.
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Figure 1: Example of (a) a DBN unrolled, and (b) the same DBN marginalized to twice
the sampling periodicity

There is no real-valued stochastic matrix describing the same processes as S1, but at half the
sampling periodicity. Put differently, there is no two-state continuous-time Markov system
that when sampled at a rate of 1 time unit produces the Markov chain with transition
matrix S1.

The problem in generating S1/2 arises because S1 has a negative eigenvalue (by contrast,
all eigenvalues of T 1 are positive). In general, only stochastic matrices with all positive
eigenvalues correspond to a continuous-time Markov process sampled at a given periodicity.
This can be viewed in two ways. First, it means that the set of continuous-time Markov
processes is smaller than the set of discrete-time Markov processes. Second, it means that
there are processes that are Markovian only when sampled at a particular periodicity and
the only way to extend them to time points outside that periodicity would be to construct
a non-Markovian (and non-stationary) process.

If the periodicity of a discrete-time Markov chain is inherent to the process, then this
result is not of concern. However, many systems do not have a natural sampling rate. The
rate is chosen for computational or measurement convenience. In this case, we must be
careful about how we employ our Markovian assumption. Or, we should directly model the
underlying system in continuous time.

1.3.2 Independencies and Markovian-ness

A similar problem arises for independencies. We describe the problem here in terms of
dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989). If unfamiliar with DBNs,
the reader may skip to the next section.

Consider the DBN in Figure 1(top,a), which has been unrolled one time step. We can
marginalize out the middle time slice and the result is the DBN in Figure 1(top,b): the
same model, but over twice the sampling periodicity. However, perhaps we wish to go the
opposite direction (to half the sampling periodicity). Figure 1(bottom,b) shows a DBN over
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Figure 2: Comparison of learning DBNs with different time-slice widths

two time units. There is no DBN graph structure over one time unit that would marginalize
to this graph structure. There may be a DBN, but the independencies expressed by the
graph structure over two time units are not expressible in the graph structure at half the
sampling periodicity. Such independencies would be buried in the parameters of the DBN
(if those parameters are possible, given the previous discussion). This means that the
independencies expressed by a DBN’s graph are a function of both the underlying process
and the sampling rate.

1.3.3 Structure Learning

Selection of a sampling rate is not just a theoretical problem. Nodelman, Shelton, and Koller
(2003) demonstrate the problem for parameter estimation. In particular, they considered
data drawn from a continuous-time Markovian process of eight variables (mostly binary).
The resulting trajectories were discretized in time according to a parameter ∆t and DBNs
(including structure) were learned for each setting. Figure 2 shows the test log-likelihood
accuracy as a function of the number of training trajectories and ∆t. It also shows the
result of not discretizing time (the CTBN line, a model explained in Section 5).

While it is not too surprising that the CTBN model does the best (as the data were
generated from this model), it is instructive that the best ∆t depends on the number of
observed trajectories. This means that, if the sampling periodicity is a model parameter,
its choice cannot be made independently of the amount of data used to estimate the DBN.

2. Continuous-Time Markov Processes

A continuous-time Markov process (CTMP) is a distribution over trajectories. A trajectory
(or sample) of a CTMP is a right-continuous piece-wise constant function of a real-valued
variable, time. Figure 3 illustrates example trajectories. If the states have a natural order-
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Figure 3: Example continuous-time Markov process samples (trajectories)

ing, Figure 3(a) might be a natural depiction. If the states are not ordered, Figure 3(b)
depicts the same sample for a three-state system. In later sections we will be considering
large factored state spaces in which a state is an assignment to multiple variables. Fig-
ure 3(c) depicts such a trajectory.

A finite CTMP defines a set of random variables, each with the same finite sample space
(the state space), indexed by a real-value usually denoted as t for time. Let X be such a
process. The Markovian property states that

X(t1) ⊥ X(t3) | X(t2),∀ t1 < t2 < t3 . (5)

Throughout this tutorial, we will describe distributions over both continuous and dis-
crete random variables. We will use lowercase letters for the densities of continuous random
variables and uppercase letters for the probabilities of discrete random variables.

2.1 Parameterization

We will parameterize a CTMP X by a starting distribution at time t = 0, P (X(0)) (and
restrict t ≥ 0) and an intensity matrix QX (or just Q if the context is clear). The starting
distribution is just as in a discrete-time Markov chain, and we will largely ignore it. The
intensity matrix is analogous to the transition matrix of a discrete-time process.

2.1.1 Comparison to Discrete-Time

Consider the following (roughly equivalent) discrete-time transition matrixM and continuous-
time intensity matrix Q:

M =




0.5 0.2 0.3
0.1 0.8 0.1
0.2 0.1 0.7


 Q =



−0.8 0.32 0.48

0.12 −0.24 0.12
0.27 0.13 −0.4


 .

We can interpret a row of M in two ways. The first row could be viewed as stating
that if the process is in state 1, at the next time step there is a 0.5 chance that it will be
in state 1, a 0.2 chance that it will be in state 2, and a 0.3 chance that it will be in state 3.
Alternatively, it could be viewed as stating that if the process is in state 1, it will remain
there for a number of steps geometrically distributed: Pr(stay for n steps) = 0.5n. And,
when it leaves it will transition to state 2 with probability 0.2/0.5 = 0.4 and to state 3 with
probability 0.3/0.5 = 0.6.

The intensity matrix Q has two similar interpretations. The first row states that if the
process is in state 1, after a short period of time ε, there is approximately a 1− 0.8ε chance
of being in state 1, a 0.32ε chance of being in state 2, and a 0.48ε chance of being in state
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3. The approximation has error O(ε2). Alternatively, it states that if the process is in state
1 it remains there for a duration exponentially distributed: p(dwell time = t) = 0.8e−0.8t.
And when it leaves, it will transition to state 2 with probability 0.32/0.8 = 0.4 and to state
3 with probability 0.48/0.8 = 0.6.

2.1.2 Racing Exponentials

We can also view a row of the matrix as describing racing exponential distributions. There
are two important properties of an exponential distribution. First, it is memoryless:

pZ(t) = pZ(t+ s|Z > s) if Z is exponentially distributed (6)

and thus is the right distribution for dwell times in a Markovian process. (The amount of
time the process has stayed in this state does not affect the remaining dwell time.) It is
also closed under minimization: Given a collection of random variables Z1, Z2, . . . , Zn,

pZi(t) = rie
−rit (7)

Y = min
i
Zi (8)

J = arg min
i
Zi (9)

implies

pY (t) = re−rt (10)

Pr(J = j) =
rj
r

(11)

where

r =
n∑

i=1

ri . (12)

That is, if we have a set of exponential distributions with (potentially) different rates, their
minimum (the time of the earliest one) is also exponentially distributed with rate equal to
the sum of the component rates. Furthermore, the component which causes this minimum
is independent of the time and is proportional to that component’s rate. Thus, we can view
each row of the matrix as a set of “racing” exponential distributions: one for each potential
next state with rates dictated by the off-diagonal elements. Whichever potential transition
happens first is the one actually taken by the process, and the rest are discarded.

2.1.3 Event Decomposition

Further, we can use this to build an interpretation of the summation of two intensity
matrices. If Q = Q1 + Q2, where both Q1 and Q2 are valid intensity matrices, then
the process of Q can be viewed as the combination of processes of Q1 and Q2 in which
both sub-processes “race” to produce the next transition: For each current state, the two
sub-processes have their own rate of transition for the possible new states. Whichever
transition happens first switches the state and the joint process continues with the new
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state. We can also view this as two different event types each with its own intensity matrix.
The process of Q is the joint process of running both events at the same time, but throwing
away (marginalizing out) the event types associated with the transitions, leaving only the
transitions themselves.

2.1.4 Infinitesimal Rate Semantics

More formally, the dynamics of an n-state CTMP are described by a n-by-n intensity matrix
Q. The diagonal elements of Q are non-positive and the non-diagonal elements of Q are
non-negative. The rows of Q sum to 0 (thus the diagonal elements are the negative row
sums, if the diagonal element is excluded from the sum). We will denote the i, j element of
Q as qi,j . Further, for notational simplicity, we will let qi = −qi,i. That is, qi is the rate of
leaving state i, the absolute value of the corresponding diagonal element.

If we let p(t) be a row-vector of the marginal distribution of the process at time t, then
the semantics of Q can be stated as

p(t+ ε) = p(t)(I + εQ) + o(ε) . (13)

This implies that

p(t+ ε)− p(t) = εp(t)Q+ o(ε) (14)

lim
ε→0

(p(t+ ε)− p(t))/ε = p(t)Q (15)

dp(t)

dt
= p(t)Q (16)

(17)

This first-order linear homogeneous differential equation has solution

p(t+ s) = p(t)eQs (18)

assuming s > 0 and the initial conditions at t, p(t), are known. The exponential is the
matrix exponential, defined by its Taylor expansion:

eQs =
∞∑

k=0

sk

k!
Qk . (19)

Although not often practical computationally, we can also express the matrix exponential
in terms of the eigenvalues ({λi}) and corresponding right and left eigenvectors ({vi} and
{wi}) of Q:

eQs =
∑

i

eλisviw
>
i . (20)

If Q is of finite size and irreducible (there is a positive-rate path from any state to any
other state), then the process is ergodic (the notion of “cycling” behavior does not exist
in continuous-time Markov processes) and there will be exactly one eigenvalue equal to 0.
The corresponding right eigenvector is the unique steady-state (or stationary) distribution
of the process. If the process is not ergodic, then there may be multiple 0 eigenvalues and
no unique stationary distribution. All other eigenvalues will be less than 0 and correspond
to transients in the system. Therefore, Q will always be negative semi-definite.
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Figure 4: Propagation of marginal distribution from time 0 to time 8 by Euler integra-
tion. Left: fixed step-size. Right: adaptive step-size. Top: 11 evaluation points.
Bottom: 5 evaluation points.

2.2 Matrix Exponential

The matrix exponential plays a critical role in many aspects of reasoning about continuous-
time dynamic systems. At first, this would seem to be a significant downside, relative to
discrete-time systems. Propagation of distribution p (as a vector) n time steps in a discrete-
time system requires the multiplication by Mn (if M is the stochastic transition matrix).
By contrast, the same operation in continuous-time requires the calculation of the matrix
exponential, which is an infinite sum of matrix powers.

Consider computing the marginal distribution at time t by integrating the differential
equation of Equation 18. The simplest method would be to use Euler integration with a
fixed step size of ∆t. This amounts to propagating over a fixed time interval by multiplying
by M = I + ∆tQ. This is essentially the same as discretizing time and approximating the
stochastic matrix over the resulting interval. To propagate to time t requires t/∆t matrix
multiplications. This is shown on the left side of Figure 4.

However, because time is continuous, we need not limit ourselves to time steps of uniform
size. If we choose an adaptive step size, we can achieve the same accuracy with fewer
evaluation points. Figure 4 demonstrates this for the simplest adaptive scheme (Euler steps
with step size proportional to derivative magnitude). Note that for the same number of
steps (computational complexity), the accuracy with adaptive steps is better.

For real applications, we would use a more advanced differential equation solver with
more intelligent step size selection; see the work of Press, Teukolsky, Vetterling, and Flan-
nery (1992) for an introduction. Yet, the idea is essentially the same: we can take larger
steps during “less interesting” time periods. To do something similar with discrete time
would require computations that essentially convert the discrete-time system to a continuous-
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time one. Techniques like squaring and scaling to multiply by large matrix powers can also
be applied to the matrix exponential. For a full discussion of matrix exponential calcula-
tions, we refer to the excellent treatments of Moler and Loan (2003) and Najfeld and Havel
(1994, 1995).

2.3 Uniformization

Uniformization (also called randomization) is a method for converting questions about a
continuous-time Markov process into ones about a discrete-time one (Grassmann, 1977).
Given an intensity matrix Q, uniformization constructs the stochastic matrix

M = Q/α+ I (21)

where α ≥ maxi qi (that is, α is no less than the largest rate in Q). For example, the
following uniformization is with α = 0.5 (the smallest possible value for α).

Q =



−0.5 0.1 0.4

0.1 −0.2 0.1
0.2 0.1 −0.3


 → M =




0.0 0.2 0.8
0.2 0.6 0.2
0.4 0.2 0.4


 (22)

The resulting stochastic matrix can be interpreted as a discrete-time process. However it
is not equivalent to sampling the continuous-time process at uniform intervals. Nor is it, in
general, equivalent to the embedded Markov chain (the sequence of states, discarding the
times of transitions). The former is achieved through the matrix exponential and the latter
is achieved by setting all diagonal elements of Q to zero and then normalizing each row to
sum to one.

Rather, the discrete-time process associated with the stochastic matrix M is related to
the continuous-time process associated with the intensity matrix Q in the following way.
Consider the procedure of (1) sampling event times from a Poisson process with rate α
(that is, the times between consecutive events are independently and identically distributed
as an exponential distribution with rate α), then (2) sampling state transitions at these
event times from the discrete-time process described by M , and then (3) discarding any
self transitions. This procedure produces samples from the same distribution as the original
CTMP described by Q.

This transformation is useful for simulation (sampling), but also for understanding and
computing the matrix exponential. Because the intensity matrixQ is negative semi-definite,
the Taylor expansion of the matrix exponential is unstable, as the “sign” of the terms
alternates. However, we can fix this by using M instead of Q. By reworking Equation 21,
we note that Q = α(M − I). We can then write

eQt = eα(M−I)t (23)

= e−αteαMt
[eA+B = eAeB if AB = BA] (24)

= e−αt
∞∑

k=0

αktk

k!
Mk (25)

=

∞∑

k=0

e−αt
αktk

k!︸ ︷︷ ︸
βk

Mk (26)
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Figure 5: Pictorial representation of a finite-length sample from a CTMP.

where βk is the probability of having exactly k events from a Poisson process with rate α
in time t. This series is more stable (M is positive semi-definite) and for a finite number
of terms, the sum is a quasi-probability vector (it is non-negative and sums to less than
1). The missing probability is a bound on the error. The sequence βk grows and then
decays. Therefore, discarding not only the tail of the series, but also early terms can speed
up computations. Fox and Glynn (1988) give a method to compute left and right bounds
on k to ensure a desired error tolerance.

Note that, if Q represents an ergodic continuous-time Markov process, then M repre-
sents an ergodic discrete-time Markov process when α is strictly greater than maxi qi (a
sufficient, but not necessary condition). If M is ergodic, then the stationary distribution
of Q is the same as the stationary distribution of M .

2.4 Likelihood

A complete finite-length sample (trajectory) Tr from a CTMP is sequence of states and the
times of the transitions, plus an ending time: Tr = {(s0, t0), (s1, t1), . . . , (sn−1, tn−1)}, tn.
Figure 5 shows a pictorial representation, for n = 5. If we use the convention that the
process starts at time 0, then t0 must be equal to 0.

The likelihood of this sample is the product of the conditional probabilities of each event
(the starting state, each dwell duration, and each state transition):

p(Tr) =

init dist︷ ︸︸ ︷
Pr(X(t0) = s0)

n−2∏

i=0




density of duration︷ ︸︸ ︷
qsie

−qsi (ti+1−ti)

pr of trans︷ ︸︸ ︷
qsi,si+1

qsi




pr of last duration︷ ︸︸ ︷
e−qsn−1 (tn−tn−1) (27)

= P0(s0)
n−1∏

i=0

e−qsi (ti+1−ti)
n−2∏

i=0

qsi,si+1 (28)

ln p(Tr) = lnP0(s0)−
n−1∑

i=0

qsi(ti+1 − ti) +
n−2∑

i=0

ln qsi,si+1 (29)

We let P0 be the distribution over the starting state of the process. Note that at time tn
the process does not transition. Rather, we observe that the process remains in state sn−1

for a duration of at least tn − tn−1.
Equation 29 can be rewritten as

ln p(Tr) = lnP0(s0)−
∑

s

T [s]qs +
∑

s6=s′
N [s, s′] ln qs,s′ (30)

where T [s] is the total time spent in state s and N [s, s′] is the total number of transitions
from s to s′, both of which are functions of Tr. This demonstrates that a CTMP is a
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member of an exponential family in which the sufficient statistics are T [·] and N [·, ·] (plus
the relevant sufficient statistics for the starting distribution), and the natural parameters
are the diagonal elements of the intensity matrix and the logarithm of the non-diagonal
elements. The likelihood of multiple trajectories has the same form, where T [s] and N [s, s′]
are the sums of the sufficient statistics over the individual trajectories.

2.4.1 Parameter Estimation

The maximum likelihood parameters can be easily derived by differentiating Equation 30,
after replacing qs with

∑
s′ 6=s qs,s′ :

∂ ln p(Tr)
∂qs,s′

=
N [s, s′]
qs,s′

− T [s] ∀ s′ 6= s (31)

which implies the ML parameters are

q̂s,s′ = N [s, s′]/T [s] ∀ s′ 6= s (32)

q̂s =
∑

s′ 6=s
N [s, s′]/T [s] ∀ s (33)

A maximum a posteriori (MAP) estimate can be calculated if we place suitable prior dis-
tributions on the parameters. In particular, we will put an independent gamma distribution
prior over each of the independent parameters, qs,s′ ,∀ s 6= s′:

p(qs,s′ ;αs,s′ , τs,s′) =
τ
αs,s′+1

s,s′

Γ(αs,s′ + 1)
q
αs,s′
s,s′ e

−qs,s′τs,s′ (34)

which has parameters αs,s′ and τs,s′ . The posterior distribution over the parameters given
data summarized by the sufficient statistics T [s] and N [s, s′] is also gamma-distributed with
parameters αs,s′ +N [s, s′] and τs,s′ + T [s]. Thus, the MAP estimates of the parameters are

q̂s =
∑

s′

N [s, s′] + αs,s′

T [s] + τs,s′
(35)

q̂s,s′ =
N [s, s′] + αs,s′

T [s] + τs,s′
. (36)

2.5 Inference

We will now consider two classic problems of reasoning in temporal systems: filtering and
smoothing. Initially, we will assume we have observations (evidence) with a pattern like that
in Figure 6: a sequence of times {t0, t1, . . . , tk} and a sequence of evidences {e1, e2, . . . , ek}.
We assume that we know the prior marginal distribution over X(t0), either from previous
reasoning or because t0 = 0.

Filtering is the task of computing p(X(t) | e1, e2, . . . , ek) for t ≥ tk. If the evidence at
each point is an observation of the state of the system, the Markovian property of the process
makes inference trivial. Instead we will assume that ei is only probabilistically related to
X(ti) but independent of everything else given X(ti). (This is analogous to a discrete-time

736

21
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Tutorial on Structured Continuous-Time Markov Processes

t0 t1 t2 t3

e1 e2 e3

Figure 6: Example evidence pattern, point evidence.

hidden Markov model.) Thus we can view each observation as a noisy measurement of the
system.

As with a hidden Markov model, we define a recursive filtering solution using a forward
“message” α whose components are defined as

αi(t) = Pr
(
X(t) = i, e[t0,t)

)
(37)

where we denote e[s,t) = {(ti, ei) | s ≤ ti < t}: the set of evidence in the interval [s, t). By
analogy we will also define e[s,t] and e(s,t] to be the evidence on [s, t] and (s, t] respectively
(which we will need later). Note that α is a row vector of probabilities, one for each state
of the system. Recursive calculation of α can be derived from

Pr
(
X(t) = j, e[t0,t)

)
=
∑

i

Pr
(
X(s) = i, e[t0,s)

)
Pr
(
X(t) = j, e[s,t) | X(s) = i

)
∀ t0 ≤ s < t

(38)

α(t) = α(s)F (s, t) ∀ t0 ≤ s < t
(39)

where the second equation is the vector version of the first equation, and the matrix F (s, t)
has element i, j equal to Pr

(
X(t) = j, e[s,t) | X(s) = i

)
.

If there is no evidence in [s, t), F (s, t) = eQ(t−s). Thus, we can propagate the distribution
from one evidence time point to the next with the matrix exponential. To propagate across
evidence times, we define

α+(t) = Pr
(
X(t), e[t0,t]

)
(40)

to be the same as α(t), but including evidence at t. If there is no evidence at t, the two
vectors are the same. If there is evidence at t, then α+(t) is the same as α(t), except that
each element is multiplied by the probability of the evidence at that time point.

If we let O(i) be a diagonal matrix in which diagonal element j is Pr(ei | X(ti) = j),
then the recurrence for α can be written as

α(t0) = α+(t0) = given (41)

α(ti) = α+(ti−1)eQ(ti−ti−1) ∀ 0 < i ≤ k (42)

α+(ti) = α(ti)O
(i) ∀ 0 < i ≤ k (43)

α(t) = α+(ti)e
Q(t−ti) ∀ ti < t ≤ ti+1 or ti < t, i = k (44)

Equation 42 is a special case of Equation 44. It propagates from “just after” one evidence
time until “just before” the next. Equation 43 propagates “across” an evidence point.
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Equation 44 can be used to construct the filtered estimate at any non-evidence time by
normalizing α(t) to sum to 1 (dividing by the probability of the evidence prior to t).

Finally, note that a similar set of recurrences can be derived for F (·, ·). The result allows
for the propagation of any distribution across time intervals which includes evidence; that
is, we are not restricted to any particular initial condition, α(t0). However, if only a single
α is to be propagated, computing F first is more computationally expensive.

2.5.1 More Complex Evidence

The above filtering equations are just an inhomogeneous hidden Markov model (that is, the
transition matrix is not constant) and familiar to those who have employed hidden Markov
models. However, with continuous time, there are evidence patterns that do not have
direct corresponding analogies in discrete-time. If the evidence consists of a finite number
of observations, we can convert it into a similar form, by breaking time into intervals of
constant evidence.

For instance, we might observe that the system is in a subset of states for a duration
of time: During this time interval, the system does not leave the subset, but we do not
observe whether there are any transitions within the subset. We can augment our evidence
to include this information. For each interval [ti−1, ti), we let Si denote the subset of states
in which the evidence constrains the system. If there are no such constraints, Si is the full
state space. For time points at which there is a change in Si, but no point evidence, O(i)

is the identity matrix (inducing no change in the filtering estimate). Both Si and O(i) may
be non-trivial for the same i.

Now to propagate from ti−1 to ti, we must use a modified intensity matrix. In particular,
we set to zero any rate which is inconsistent with the evidence Si: all rates to, from, or
within the set of states that are not in Si. Let Q(i) denote such a matrix. If the rows
and columns are permuted such that the states in Si are in the upper left corner, then this
matrix has the form

Q(i) =

[
Q̃Si

0
0 0

]
(45)

where Q̃Si
is the submatrix ofQ of the rows and columns corresponding to Si. Additionally,

we modify O(i−1), setting to 0 any diagonal elements corresponding to states not in Si.

Note that Q(i) is not (strictly) an intensity matrix: its rows do not sum to 0. In
general, a diagonal element is greater (in absolute value) than the sum of the other row
elements because we have set to zero non-diagonal rates. This “missing rate” corresponds to
the probability of leaving the evidence set (and therefore not conforming to the evidence).
While eQ(ti−ti−1) is a stochastic matrix representing the conditional distribution at time ti
given the state at time ti−1, eQ

(i)(ti−ti−1) is a substochastic matrix (the row sums are less
than or equal to 1), where the sum of each row is the probability of the evidence over the
interval, given the state at time ti−1.
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The new filtering recurrence is

α(t0) = given (46)

α(ti) = α+(ti−1)eQ
(i)(ti−ti−1) ∀ 0 < i ≤ k (47)

α+(ti) = α(ti)O
(i) ∀ 0 < i ≤ k (48)

α(t) = α+(ti)e
Q(i+1)(t−ti) ∀ ti < t ≤ ti+1 or ti < t, i = k . (49)

We might also observe a transition at an exact time point. More generally, at time ti we
might observe that a transition occurred from one state of the set U−i to one state of the set
U+
i (without knowing exactly which states within the sets). In this case, elements of α(t)

have the probabilities of a duration lasting until at least t, and α+(t) should have the prob-
ability density of a duration lasting exactly until t. The difference between the probability
of the tail of an exponential and the density at the same point is just a multiplication by
the relevant rate q. Thus, for this type of evidence, we can just modify O(i). In particular,

O(i)
j,k =

{
qj,k if j ∈ U−i , k ∈ U+

i , and j 6= k

0 otherwise
. (50)

The recurrence remains the same, with the new definition of O(i). Other evidence types
are also possible and can be derived from the above types by augmenting the state space.

2.5.2 Smoothing

Smoothing is the problem of calculating Pr
(
X(t) | e[t0,tk]

)
for t0 ≤ t ≤ tk. As common with

Markov processes, we note that

Pr
(
X(t) | e[t0,tk]

)
∝ Pr

(
X(t) | e[t0,t)

)
Pr
(
e[t,tk] | X(t)

)
(51)

where the constant of proportionality can be found by noting that the sum of Equation 51
over the value of X(t) must equal 1. The first term on the right is calculated with the
α(·) recurrence above. The second term we calculate with a backward message recurrence.
Define

βi(t) = Pr
(
e[t,tk] | X(t) = i

)
(52)

β+
i (t) = Pr

(
e(t,tk] | X(t) = i

)
(53)

If we let β be a column vector, then the backward recurrence is analogous the forward one,
but with right multiplication instead of left multiplication:

β+(tk) = 1 vector of 1s (54)

β(ti) = O(i)β+(ti) ∀ 0 < i ≤ k (55)

β+(ti−1) = eQ
(i)(ti−ti−1)β(ti) ∀ 0 < i ≤ k (56)

β(t) = eQ
(i)(ti−t)β(ti) ∀ ti−1 ≤ t < ti . (57)

For any time t, the vector of the distribution of the state of the system at t given all the
evidence is

p(X(t) | e[t0,tk]) ∝ α(t)� β(t) (58)

where � is the Hadamard (point-wise) product.
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2.6 Parameter Estimation from Incomplete Evidence

Section 2.4.1 demonstrated that a CTMP is a member of an exponential family with suf-
ficient statistics T [i] (the amount of time spent in state i) and N [i, j] (the number of
transitions from i to j). If the evidence trajectories are fully observed over a continuous
interval of time, then these sufficient statistics can be trivially tallied. Further, if each
evidence trajectory is observed at t = 0, the sufficient statistics for the initial distribution
are also directly observed.

However, if portions of the interval are hidden, or more generally the observations are
of the form of the previous section, direct likelihood maximization is not feasible. There
are two basic approaches for maximum likelihood estimation in this case: gradient ascent
and expectation maximization (EM).

For gradient ascent, we can replace the sufficient statistics in Equation 31 with their
expected values The standard argument for exponential models applies: Let Tr be a partially
observed trajectory and let h stand for any potential completion of it.

ln p(Tr) = ln
∑

h

eln p(Tr,h) (59)

∂ ln p(Tr)
∂qi,j

=
1

p(Tr)
∑

h

p(Tr, h)
∂ ln p(Tr, h)

∂qi,j
(60)

= Eh|Tr

[
N [i, j]

qi,j
− T [i]

]
(61)

=

(
N̄ [i, j]

qi,j
− T̄ [i]

)
(62)

where N̄ [i, j] and T̄ [i] are the expected values of N [i, j] and T [i] with respect to completions
of Tr. For EM, we similarly replace N [i, j] and T [i] in Equation 32 with N̄ [i, j] and T̄ [i].
We are therefore left with the problem of computing the expected values of N [i, j] and T [i].

Full derivations are shown in the work of Nodelman et al. (2003). A quick version for
T̄ [i] is

T̄ [i] =

∫ tk

t0

p(X(t) = i | e[t0,tk]) dt (63)

=
1

p(Tr)

∫ tk

t0

αi(t)βi(t) dt . (64)

The expected value of N [i, j] has a similar form:

N̄ [i, j] =
qi,j
p(Tr)

∫ tk

t0

αi(t)βj(t) dt+
∑

l∈Trans

αi(tl)O
(l)
i,jβ

+
j (tl)∑

i′,j′ O
(l)
i′,j′

(65)

where Trans is the set of evidence indices at which time a transition was (perhaps partially)
observed: The first term handles unobserved transitions and the second handles (partially)
observed transitions.
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If we let ∆i,j be a matrix of all zeros, except for a single one in location (i, j), the
integrals in both Equation 64 and Equation 65 have the form

∫ tk

t0

αi(t)βj(t) dt =
k∑

l=1

∫ tl

tl−1

αi(t)βj(t) dt (66)

=
k∑

l=1

∫ tl

tl−1

α+(tl−1)eQ
(i)(t−tl−1)∆i,je

Q(i)(tl−t)β(tl) dt . (67)

Thus, after a forward and backward pass to calculate α+(i) and β(i) at each evidence
change point i, each integral is relatively simple. They can be solved by standard quadrature
methods or by the solution of a differential equation (Asmussen, Nerman, & Olsson, 1996).
Alternatively, the calculation of α and β usually results in values for each at various time
points, which can be interpolated to full functions and used to directly solve the integrals.

3. Kronecker Algebra Representations

When the number of states is no more than a few thousand, the above methods are compu-
tationally feasible on a modern computer. However, most models are described in terms of
assignments to variables. Thus the number of states grows exponentially with the number
of variables. For more than a few tens of variables, we must seek more compact represen-
tations.

For the remainder of this paper, we will consider the state space of the process X to
be an assignment to L variables, {X1, X2, . . . , XL}. We let variable Xi have ni possible
assignments. Thus, the total state space is of size n =

∏L
i=1 nl. We let a bold x stand

for a state (joint assignment to all L variables), with component xi being the assignment
to variable i in state x. Such a state space is often referred to as factored or structured or
variable-based.

Kronecker products and sums are natural “basic operations” from which to build com-
pact representations of the process intensities. In some cases, these compact representations
naturally describe the transition rates, but do not as naturally describe the diagonal ele-
ments of Q (the negative rates of leaving each state). Thus, we will define R to be the same
as Q, except with zeros at each diagonal position. The diagonals can be reconstructed from
the non-diagonal elements in the same row, so the information content is the same.

3.1 Kronecker Product

The first basic operation is the Kronecker product. Given matrices A(1),A(2), . . . ,A(K)

where A(k) is of general size mk-by-nk, the Kronecker product is written

A =

K⊗

k=1

A(k) (68)

where A (the result) is an m-by-n matrix: m =
∏
kmk and n =

∏
k nk. The elements of A

represent all possible multiplications of one element from each of A(1),A(2), . . . ,A(K). Let
Mk = {1, 2, . . . ,mk} and Nk = {1, 2, . . . , nk}, that is the valid indices into matrix A(k).
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Given A =

[
a00 a01

a10 a11

]
and B =



b00 b01 b02

b10 b11 b12

b20 b21 b22




A⊗B=

[
a00Ba01B

a10Ba11B

]
=




a00b00 a00b01 a00b02 a01b00 a01b01 a01b02

a00b10 a00b11 a00b12 a01b10 a01b11 a01b12

a00b20 a00b21 a00b22 a01b20 a01b21 a01b22

a10b00 a10b01 a10b02 a11b00 a11b01 a11b02

a10b10 a10b11 a10b12 a11b10 a11b11 a11b12

a10b20 a10b21 a10b22 a11b20 a11b21 a11b22




Figure 7: Example Kronecker product

Then, let Ir be a mapping fromM1×M2×· · ·×MK to {1, 2, . . . ,m} and let Ic be similarly
defined as a mapping from N1 ×N2 × · · · ×NK to {1, 2, . . . , n}. It does not matter usually
what the mappings are, but by convention we take them to be lexicographic orderings (or
mixed-base numbering index). For instance Ir(i1, i2, . . . , iK) =

∑
1≤k≤K ikm1:k−1 where

ma:b =
∏
a≤k≤bmk. Then

AIr(i1,i2,...,iK),Ic(j1,j2,...,jK) =

K∏

k=1

A(k)
ik,jk . (69)

While the notation makes it appear complex, the concept is simple. Figure 7 demonstrates
a simple example. In terms of sparsity (one measure of structure), the Kronecker product
has a number of non-zero elements equal to the product of the number of non-zero elements
in each input matrix.

A Kronecker product is analogous to a factor product (in Bayesian network terminology)
if we treat each operand matrix as a factor over two different variables (and no matrices
share the same variables), and the result matrix is a factor in which half of the variables
are flattened into the “column” dimension and the other half are flattened into the “row”
dimension.

In terms of distributions, the Kronecker product represents independence. Given two
variables X1 and X2 with marginal distributions represented by the vectors v1 and v2,
v1 ⊗ v2 is a joint distribution over both X1 and X2. In particular, it is the independent
joint distribution with marginals v1 and v2.

In terms of a rate matrix, the Kronecker product represents synchronization (Plateau,
1985). If we have two variables, X1 and X2 with rate2 matrices R1 and R2, R1 ⊗ R2

is a rate matrix over the state space X = X1 × X2 (joint assignments to X1 and X2). It
represents a rate matrix in which changes in the state of X1 must occur at the same time
as those in the state of X2 (both variables will be changed by every transition).

2. This does not hold generally for intensity matrices, as the Kronecker product does not do anything
sensible with the diagonal elements.
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A⊕B = A⊗ I3 + I2 ⊗B =




a0,0 a0,1

a0,0 a0,1

a0,0 a0,1

a1,0 a1,1

a1,0 a1,1

a1,0 a1,1




+




b0,0 b0,1 b0,2
b1,0 b1,1 b1,2
b2,0 b2,1 b2,2

b0,0 b0,1 b0,2
b1,0 b1,1 b1,2
b2,0 b2,1 b2,2




=




a0,0+b0,0 b0,1 b0,2 a0,1

b1,0 a0,0+b1,1 b1,2 a0,1

b2,0 b2,1 a0,0+b2,2 a0,1

a1,0 a1,1+b0,0 b0,1 b0,2
a1,0 b1,0 a1,1+b1,1 b1,2

a1,0 b2,0 b2,1 a1,1+b2,2




Figure 8: Example Kronecker sum, given same matrices A and B as in Figure 7. Zeros are
omitted. Note that the non-zero off-diagonal entries all correspond to only one
of the two indices (into A or B) changing.

3.2 Kronecker Sum

The other Kronecker operation is the Kronecker sum. It is only defined on square matrices.
Given square matrices A(1),A(2), . . . ,A(K) where A(k) has size nk-by-nk, the Kronecker
sum is defined in terms of the Kronecker product:

A =
K⊕

k=1

A(k) =
K∑

k=1

In1 ⊗ In2 ⊗ . . . Ink−1 ⊗A(k) ⊗ Ink+1 ⊗ · · · ⊗ InK (70)

where In is the identity matrix of size n-by-n. The Kronecker sum has the same size as
the Kronecker product of the same matrices and we can use the same indexing function
to reference elements in the sum, but we need only one because the matrix is square, thus
Ir = Ic = I:

AI(i1,i2,...,iK),I(j1,j2,...,jK) =





∑K
k=1A

(k)
ik,ik if il = jl for all l

A(k)
ik,jk if il = jl for all l except l = k

0 otherwise.

(71)

Figure 8 demonstrates a simple example.
In terms of a CTMP, the Kronecker sum represents asynchronicity. Given two variables,

X1 and X2 with intensity3 matricesQ1 andQ2, Q1⊕Q2 is an intensity matrix over the joint
state space in which each process’s events proceed irrespective of the other’s state. That
is, the processes are independent (assuming their starting distributions are independent).

3. The same holds for rate matrices, but we can be stronger here than for the Kronecker product and make
this statement about the intensity matrices too.
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Note that the intensity of any transition that involves two or more variables is zero (at any
instant, a maximum of one variable can change).

3.3 Properties

The Kronecker product obeys the classic distributive property:

(A+B)⊗C = A⊗C +B ⊗C

The mixed product property provides a relationship between the Kronecker product and
the matrix product. Given matrices A, B, C, D and assuming that AC and BD are valid
matrix products,

(A⊗B)(C ⊗D) = (AC)⊗ (BD) . (72)

One consequence is that the Kronecker product can be expressed as

K⊗

k=1

A(k) =
K∏

k=1

In1 ⊗ In2 ⊗ · · · ⊗ Ink−1 ⊗A(k) ⊗ Ink+1 ⊗ · · · ⊗ InK (73)

=
K∏

k=1

In1:k−1 ⊗A(k) ⊗ Ink+1:K (74)

where na:b is the product of the terms na through nb as defined above. This shows a
bit of the relationship between Kronecker products and sums: Compare Equation 70 and
Equation 73.

This can be further reworked as

K⊗

i=k

A(k) =
K∏

i=k

Pn1:k,nk+1:K
> · (Ink ⊗A(k)) · Pn1:k,nk+1:K (75)

where nk = n1:K/nk and P a,b is the matrix describing an a,b-perfect shuffle permutation of
(0, ..., ab− 1): its entry in position (i, j) is 1 if j = (i mod a) · b+ bi/ac, and 0 otherwise (in
particular, P a,b = P a,b = Ia·b if a or b is 1). Whereas Equation 74 orders the Kronecker
products of the outer product’s terms so that the elements of Ak are in the correct places,
Equation 75 repeats Ak on the diagonal and then permutes the rows and columns to place
the elements in the correct locations. A similar transformation can be used to rewrite
Equation 70 as a sum of shuffled block-diagonal matrices. Because the permutations can
often be done implicitly in code, these versions can be useful in deriving algorithms.

3.4 Compact Kronecker Representations

Given a factored state space as before, any joint rate matrix R can be expressed as a sum
of Kronecker products:

R =

E∑

e=1

L⊗

l=1

R
(l)
e (76)

where there are L variables and R
(l)
e is a rate matrix over the space of variable l only. In

particular, an exponentially sized (in the number of variables) representation is straight-
forward: e ranges over the elements in the resulting matrix. For element corresponding to
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(x1, x2, . . . , xL), (x′1, x
′
2, . . . , x

′
L), R

(l)
e = ∆xl,x

′
l

for 1 < l ≤ L and the same for l = 1, except
multiplied by the scalar value to be placed in this location. In this way each term in the
sum is a matrix with at most a single non-zero element. However, for many processes we
can expect E to be a manageable number. For instance, if the variables are all independent,
E = L (and all but L of the L2 rate components are identity matrices), as per the Kronecker
sum above.

We can view each of the E terms in the sum as separate “events” whose identities have
been marginalized out to produce the resulting process (see Section 2.1.3). These events
must couple variables synchronously (due to the Kronecker product). We exploit this type
of decomposition more extensively in the next sections.

4. Decision Diagram Representations

While the encoding in Equation 76 can be efficient, we can do better by exploiting more
internal structure. R can be viewed as a mapping from two discrete domains (the row index
and the column index) to a real value. Decision diagrams have long been used in computer
science to compactly encode functions over discrete domains. Here we show how they have
been used in CTMPs and how they can be seen as an alternative to Kronecker algebra
encodings, in the case of the MTBDDs used in PRISM (Kwiatkowska, Norman, & Parker,
2011), or even as an extension of Kronecker algebra encodings, in the case of the Matrix
Diagrams used in Möbius (Deavours, Clark, Courtney, Daly, Derisavi, Doyle, Sanders, &
Webster, 2002) or the EV∗MDDs used in SMART (Ciardo, Jones, Miner, & Siminiceanu,
2006).

4.1 Decision Diagram Overview

Decision diagrams encode functions of the form f : X → X0 where, as before, the domain
state space X is structured: X = X1 × · · · ×XL. In other words, f is applied to a (state)
tuple and evaluates to an element of a range set X0. One can then think of f as the encoding
of a vector indexed by X and having entries with values in X0. Of course, the same idea can
be employed to encode matrices, we simply need to use the domain X×X. (In practice, we
actually use the interleaved domain X ′1×X1× · · · ×X ′L×XL, where the “unprimed” state
variables refer to row indices, or “from” states, while the “primed” state variable refer to
column indices, or “to” states, as this usually leads to more compact decision diagrams.)

Binary decision diagrams, or BDDs (Bryant, 1986), encode functions for which all sets
forming the domain X are binary, while multiway decision diagrams, or MDDs (Kam, Villa,
Brayton, & Sangiovanni-Vincentelli, 1998), allow non-binary domain sets. However, for both
the range X0 is binary. For our numeric application, we need to extend such representations
to allow the range X0 to be either the integers Z (possibly augmented with the value ∞ to
indicate “undefined”) or the reals R (possibly, again, augmented with ∞, or restricted to
the nonnegative reals R≥0). The range Z is used primarily to encode indexing functions for
non-consecutive sets of states. The range R is used to encode the rates themselves.

Informally, decision diagrams are directed acyclic graphs organized in layers with each
layer corresponding to a different variable in the domain of the function. The outgoing
edges from a node correspond to the values the variable on that layer can take on. The
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value of the function is determined by following the path from the root corresponding to the
values taken by the domain variables. The path ends in a terminal node which, in BDDs
and MDDs, give the value of the function.

A first proposal to encode non-binary function was to extend BDDs and MDDs so that,
instead of the terminals 0 and 1, any element of X0 can be a terminal node. The resulting
multi-terminal (Clarke, Fujita, McGeer, Yang, & Zhao, 1993) BDDs (or MTMDDs) are
quite general. However, as we will see, MTMDDs are sometimes unable to compactly
encode even simple functions. We therefore focus on a newer class of edge-valued deci-
sion diagrams, which can be exponentially more compact, and provably never larger, than
MTMDDs (Roux & Siminiceanu, 2010). For edge-valued decision diagrams, a value is as-
sociated with each edge in the tree, and the function’s value is determined from the values
along the path to the terminal node. The exact definition of these diagrams depends on
the operator used to combine edge values. We consider two cases, EV+MDDs (Ciardo &
Siminiceanu, 2002) (where X0 is either Z ∪ {∞} or R ∪ {∞} and edge values along a path
are summed) and EV∗MDDs (Wan, Ciardo, & Miner, 2011) (where X0 is R≥0 and edge
values along a path are multiplied).

4.2 Multiterminal and Edge-Valued Decision Diagrams

Formally, both an EV+MDD and an EV∗MDD are acyclic directed edge-labeled and edge-
valued graphs. A node in the graph p has a level p.lvl and a set of directed edges indexed
by x. The edge associated with label x is written as p[x] = 〈p[x].val,p[x].ch〉, where p[x].val
is the value associated with the edge and p[x].ch is the target of the edge.

• The only terminal node (one without outgoing edges) is Ω, at level 0: Ω.lvl = 0.

• A nonterminal node p is at level k ∈ {1, . . . , L}: p.lvl = k. For each xk ∈ Xk, it has
an outgoing edge labeled xk, associated with a value v ∈ X0, and pointing to a node
q with q.lvl < k. Thus p[xk] = 〈v,q〉.

• A node p at level k encodes the function fp : X1 × · · · ×Xk → X0. For EV+MDDs,
fp is defined recursively as fp = 0 if p = Ω, and fp(x1, . . . , xk) = p[xk].val +
fp[xk].ch(x1, . . . , xp[xk].ch.lvl) otherwise (that is, if p is a nonterminal node).

For EV∗MDDs, fp is defined recursively as fp = 1 if p = Ω, and fp(x1, . . . , xk) =
p[xk].val · fp[xk].ch(x1, . . . , xp[xk].ch.lvl) otherwise.

Most decision diagram definitions have additional restrictions to ensure canonicity, that
is so that any representable function has a unique representation. For the edge-valued
decision diagrams we have defined, this is achieved by additionally requiring all of the
following.

• There are no duplicate nodes: if p.lvl = q.lvl = k and, for each xk ∈ Xk, we have
p[xk] = q[xk], then p = q.

• The absorbing value terminates a path: for EV+MDDs, p[xk].val = ∞ implies that
p[xk].ch = Ω; for EV∗MDDs, p[xk].val = 0 implies that p[xk].ch = Ω.

• Each node p at level k > 0 is normalized : for EV+MDDs, min{p[xk].val : xk ∈ Xk} =
0; for EV∗MDDs, max{p[xk].val : xk ∈ Xk} = 1.
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Figure 9: Encoding the lexicographic index function, φX , for set X. The left panel shows
the quasi-reduced MDD encoding X followed by the MTMDD and the EV+MDD
encoding φX ; the right panel shows the corresponding encodings for the set Y =
{100, 110, 001, 101, 011}. In either case, the EV+MDD is isomorphic to the MDD.
Each level of the tree corresponds to a different variable. Black boxes are the
values of this variable (and traversal of the diagram follows the edge leading out
of this box for the value of input). White boxes (for EV+MDD) are the values
of the corresponding edge (which are summed to produce the function’s value).
The 0 at the top of the EV+MDD is the value added to any path or traversal of
the diagram.

Furthermore, we require that one of the following two reduction forms must be used.

• In quasi-reduced form, only nodes at level L have no incoming edges (except the special
case of the graph consisting of just Ω) and the children of a node at level k are at
level k − 1 (except for absorbing-valued edges, which point to Ω, as stated above).

• In fully-reduced form, there are no redundant nodes, where a node p at level k is
redundant if p[xk] = p[yk] for all xk, yk ∈ Xk.

Strictly speaking, an EV+MDD node encodes a function with values between 0 (in-
cluded) and ∞ (possibly included); thus, a function f with range Z ∪ {∞} or R ∪ {∞} is
encoded by 〈σ,p〉 where σ = min{f(i) : i ∈ X} and fp = f − σ (the special case f ≡ ∞
is encoded by the pair 〈∞,Ω〉). Analogously, an EV∗MDD node encodes a function with
values between 0 (possibly included) and 1 (included); thus a function f with range R≥0 is
encoded by 〈σ,p〉 where σ = max{f(i) : i ∈ X} and fp = f/σ (the special case f ≡ 0 is
encoded by the pair 〈0,Ω〉). In the following, we use the term EV+MDD or EV∗MDD also
for the pair 〈σ,p〉, with the understanding that σ is just a parameter that scales the values
of the function encoded by node p.

4.3 Lexicographic Index Example

We illustrate the compactness of these decision diagrams using the lexicographic index, also
called the mixed-base value, of a state x = (x1, . . . , xL), defined as φ(x) =

∑
1≤k≤L xk ·n1:k−1,
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where na:b = na · · ·nb for a ≤ b (as in Section 3.1). We discuss the importance of this
function after showing its encoding.

Figure 9 (left) shows the lexicographic index function φ (along side the MDD encoding
the set of states). The MTMDD for φ is a full L-level tree with n1:L leaves. By contrast,
the EV+MDD for φ contains just one node at each level, where the child labeled xk of the
node at level k points to the node at level k − 1 and has value xk · n1:k−1.

Interestingly, this function retains a compact encoding even if we modify it so that
it applies to a set Y ⊂ X, that is φY (x) = |{y ∈ Y : φ(y) < φ(x)}| if x ∈ Y , and
φY (x) =∞ otherwise, in the sense that the MDD encoding Y and the EV+MDD encoding
φY are isomorphic (right panel in Figure 9). This is of particular importance for the exact
numerical solution of structured CTMPs whose reachable state space Xrch is a strict (and
possibly complicated) subset of X, since in this case we need to frequently and efficiently
map a state x = (x1, . . . , xL) to its index φXrch

(x) in a full probability vector of size |Xrch|.
Compactly representing this index function is key to efficient calculations in such CTMPs.

Obviously, EV∗MDDs can also be exponentially more compact than MTMDDs; simply
consider that the EV∗MDD encoding of e−φ also has one node per level, where the child
with label xk of the node at level k has value e−xk·n1:k−1 .

4.4 Decision Diagram Operations

In addition to efficiently encoding structured functions, decision diagrams are also able
to efficiently manipulate functions. All decision diagram operations proceed recursively
from the root node(s) and make extensive use of dynamic programming. Specifically, they
use an operation cache to retrieve the result of a specific operation on a specific choice of
parameters, if this result has been previously computed when exploring different paths in the
recursion. This reduces the worst-case complexity of an operation (for example, computing
c = a + b, where a and b are functions encoded by two EV∗MDDs) from exponential (i.e.,
the size of the domain) to polynomial. For example, Figure 10 shows the pseudocode for
an algorithm to perform the element-wise addition of two EV∗MDDs, that is when α, β ≥ 0
and a, b are EV∗MDD nodes at level L (unless α = 0, in which case a = Ω, or β = 0,
in which case b = Ω), Sum(L, 〈α,a〉, 〈β,b〉) returns an EV∗MDD 〈ρ,r〉 such that, for all
x = (x1, . . . , xL) ∈ X, we have ρ · fr(x) = α · fa(x) + β · fb(x); of course, the input
EV∗MDDs are assumed to be in canonical form, and the output EV∗MDD is guaranteed
to be in the same canonical form. Its complexity is the product of the sizes of the input
EV∗MDDs.

In a practical implementation, the “unique table,” which stores nodes and avoids dupli-
cates, is implemented as a lossless hash table which, given a lookup key 〈level, r[0], . . . , r[nk−
1]〉, returns a node’s address, while the cache is implemented as a (possibly) lossy hash ta-
ble. The cache can be made more effective by scaling and exploiting commutativity. For
example, by defining an arbitrary order on nodes (for example, a ≺ b if the memory address
of a is smaller than that of b), we can exchange the two input EV∗MDDs to ensure that
a ≺ b prior to cache lookup, and then observe that α·fa+β ·fb = α·(fa+γ ·fb), for γ = β/α,
so that we just store entries of the form 〈SUM, a, γ, b→ ρ, r〉 in the cache. Then, assuming
p ≺ q, the call Sum(k, 〈0.5,p〉, 〈0.2,q〉) would be cached as 〈SUM, p, 0.4, q → σ, s, 〉 and
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function Sum(level k, EV∗MDD〈α,a〉, EV∗MDD〈β,b〉)
if a = b then return 〈α+ β,a〉 . This includes the terminal case k = 0: a = b = Ω
if α = 0 then return 〈β,b〉 . a = Ω by definition
if β = 0 then return 〈α,a〉 . b = Ω by definition
if cache contains 〈SUM,α, a, β, b→ ρ, r〉 then return 〈ρ,r〉 . Check if result is in

the cache
r ← NewNode(k) . Create new temporary result node at level k
for all xk ∈ Xk do

r[xk]← Sum(k − 1,〈α · a[xk].val,a[xk].ch〉,〈β · b[xk].val,b[xk].ch〉) . Recurse down
one level

ρ← maxxk∈Xk
{r[xk].val}; . Maximum edge value for node r before normalization

for all xk ∈ xk do
r[xk].val← r[xk].val/ρ . Normalize node r so that the maximum edge value is 1

r ← UniqueTableInsert(r); . If node like r exists, return it and delete r, else
return r

Enter 〈SUM,α, a, β, b→ ρ, r〉 in cache; . Remember the result in the operation
cache

return 〈ρ,r〉;

Figure 10: Pseudo-code for sum of quasi-reduced EV∗MDDs (a and b are either Ω or nodes
at level k). The fully-reduced version is similar but slightly more involved, as it
needs to take into account the levels of a and b.

return 〈0.5σ,s〉, while a subsequent call Sum(k, 〈0.25,p〉, 〈0.1,q〉) or Sum(k, 〈0.1,q〉, 〈0.25,p〉)
would find 〈SUM, p, 0.4, q → σ, s, 〉 in the cache and immediately return 〈0.25σ,s〉.

4.5 Encoding Transition Rate Matrices with EV∗MDDs

We now turn to the use of EV∗MDDs to compactly encode the transition rate matrix R
(the same as the intensity matrix Q, but without the diagonal) of a CTMP. This can be
accomplished using various approaches.

4.5.1 Monolithic Encoding vs. Disjunctive Partition Encoding

Clearly, a node r of a 2L-level EV∗MDD can encode an arbitrary function of the form
X × X → [0, 1]. Then, for σ ≥ 0, the pair 〈σ,r〉 encodes an arbitrary function of the
form X × X → [0, σ], where EV∗MDD levels (1, . . . , 2L) correspond to state variables
(x′1, x1, . . . , x

′
L, xL), that is, we use an interleaved order to describe the transition rate from

x to x′. With a monolithic approach, we can then store R using a single EV∗MDD 〈σ,r〉
where σ is the largest rate in R and r encodes matrix R/σ.

However, many practical systems exhibit asynchronous behavior, that is each state
change is due to some event e ∈ E occurring (asynchronously) somewhere in the system.
In these situations, we can employ a disjunctive partition to encode R, storing a set of
EV∗MDDs {〈σe,re〉 : e ∈ E}, so that 〈σe,re〉 encodes matrix Re, where Re(x, x

′) describes
the rate at which the system moves from state x to state x′ due to the occurrence of event e.
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With this disjunctive partition encoding, R =
∑

e∈ERe does not have to be built explicitly;
rather, the individual matrices Re are directly used in the numerical computations used to
solve the CTMP. The idea of a disjunctive partition was initially suggested for BDDs (Burch,
Clarke, & Long, 1991), although it is obviously also related to Kronecker encodings: consider
Equation 76, which expresses R first and foremost as a sum.

The choice between a monolithic or a disjunctive partition encoding is largely model-
dependent. In most applications, the high-level language description of the model suggests
what the set of asynchronous events E should be. Thus, we first build the EV∗MDDs for the
disjuncts Re then, if desired, we can explicitly build the EV∗MDD for R by summing the
EV∗MDDs for the disjunct corresponding to each event (using the algorithm in Figure 10,
for instance).

However, while the disjunct EV∗MDDs are usually quite compact, the EV∗MDD for
R obtained by summing the disjuncts Re might still be very compact, or it might grow
very large. In the former case, the monolithic approach is preferable, as it allows us to
directly use the EV∗MDD encoding R in the numerical iterations. In the latter case, the
disjunctive partition approach is preferable, as it allows us to use the EV∗MDD for each Re
individually, without even attempting to build the monolithic EV∗MDD encoding R.

For example, consider a simple system of four Boolean variables, X1, X2, X3, and
X4, and two events. The first event, c21, changes the value of (X2, X1), interpreted as
a 2-bit integer, in the sequence 0−[1]→ 1−[1/2]→ 2−[1/4]→ 3−[1/8]→ 0−[1]→ · · · , where the
numbers in the square brackets indicate the rate of the corresponding transition. The second
event, c43, changes the value of (X4, X3), interpreted as a 2-bit integer, in the sequence
0−[3]→ 1−[1]→ 2−[1/3]→ 3−[1/9]→ 0−[3]→ · · · . Figure 11 on the left shows the EV∗MDDs
encoding the matricesR21 andR43 corresponding to these two events, as well as the matrix
R = R21 +R43. (for visual simplicity, edges with value 0, which by definition point to the
terminal node Ω, are not shown).

4.5.2 Adopting Ideas from Kronecker Encodings: Identity Patterns

Neither the monolithic approach nor the disjunctive partition approach exploit locality : the
fact that most events (synchronously) affect only a few state variables. In other words,
while each matrix Re is conceptually of size |X| × |X|, it usually has a much smaller
support Se ⊆ {x1, . . . , xL}. Specifically, Xk ∈ Se if and only if Xk and e are dependent : the
local state xk affects the rate at which e occurs (including the case where it may disable e
altogether, that is set its rate to 0) or is changed by the occurrence of e. When Xk 6∈ Se,
Xk and e are independent and the EV∗MDD encoding Re contains identity patterns in
correspondence to xk. For example, the EV∗MDD encoding R21 in Figure 11 on the left
exhibits such patterns with respect to variables X4 and X3, while the one for R43 exhibits
them for X2 and X1.

Essentially, these identity patterns simply describe the fact that the value of x′k (the
new value of xk after the occurrence of e) equals the old value of Xk and that the rate is
not affected by the value of Xk, and this is true for all possible values of Xk. When this

happens, the Kronecker encoding of event e has R
(k)
e = Ink , while the quasi-reduced or

the fully-reduced forms alone cannot take advantage of these common patterns. To exploit
these patterns, a combination of the fully-reduced form, for unprimed level Xk, and a new
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Figure 11: An example of EV∗MDDs encoding transition rate matrices using the quasi-
reduced form (left) or the fully-identity-reduced form (right). Omitted edges
have implied value 0 (thus resulting in value 0 for any path containing them).
The right diagrams are the same as those on the left, except that identity pat-
terns have been omitted and are implied: Any completely skipped pair of levels
is assumed to have an identity structure (compare to corresponding diagram on
the left).

identity-reduced form (Ciardo & Yu, 2005) for primed level X ′k, is needed. This allows
us to encode Re in an EV∗MDD which has nodes only at (unprimed and primed) levels
corresponding to state variables in Se. A further advantage of this fully-identity-reduced
form is that the resulting decision diagrams, unlike a Kronecker encoding, also recognize
and exploit partial identity patterns (those arising in models where Xk remains unchanged
after e occurs in certain states but not in others). Figure 11 on the right shows the encoding
of the same matrices R21, R43, and R, but using this new fully-identity-reduced form.

4.5.3 Beyond Kronecker: Disjunctive-then-Conjunctive Partition Encoding

We can push the decomposition further by employing a disjunctive-then-conjunctive parti-
tion approach. This idea was first introduced for logic analysis (Ciardo & Yu, 2005) but
it is also related to Equation 76, which expresses R as a sum of products. This is partic-
ularly appropriate for globally-asynchronous locally-synchronous systems, where not only
each state change is due to an (asynchronous) event e ∈ E, but the occurrence of e de-
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pends on and (synchronously) changes only a few state variables. Each Re is then further

decomposed into the product of m matrices, Re =
∏

1≤c≤mR
(c)
e and, again, each matrix

R
(c)
e is conceptually of size |X| × |X| but, in practice, it usually has a small support S

(c)
e .

Specifically, Xk ∈ S(c)
e if and only if the fully-identity-reduced EV∗MDD for R

(c)
e contains

a node associated to Xk or X ′k. We restrict ourselves to the case where the supports of

the conjuncts for an event are disjoint, so that
⋃

1≤c≤m S
(c)
e = Se and each S

(c)
e is sub-

stantially smaller than Se. For example, when a Kronecker encoding for Re exists, that is

Re =
⊗

1≤k≤LR
(k)
e , we have S

(k)
e = {Xk} for each Xk ∈ Se, that is for each R

(k)
e 6= Ink ;

in this case, a disjunctive-then-conjunctive approach that uses an EV∗MDD to store each

R
(c)
e is as compact as the disjunctive partition approach that uses an EV∗MDD to store

each Re, and both are essentially just as compact as the Kronecker approach (except that
they can save additional memory by exploiting partial identity patterns).

The disjunctive-then-conjunctive approach is instead distinctly more efficient when the
Kronecker approach is not applicable (that is, when the Kronecker approach would require
an enormous set of events to correctly describe R), but it can nevertheless be seen as an
extension of the Kronecker approach. Consider using the decomposition of Equation 75:

Re =
⊗

1≤k≤L
R

(k)
e =

∏

1≤k≤L
Pn1:k,nk+1:L

> · (Ink ⊗R
(k)
e ) · Pn1:k,nk+1:L

=
∏

Xk∈Se

Pn1:k,nk+1:L
> · (Ink ⊗R

(k)
e ) · Pn1:k,nk+1:L

where the last step simply stresses that, when R
(k)
e = Ink , the corresponding factor is just

In1:L and can be skipped.

This is the idea behind the Shuffle Algorithm (Fernandes, Plateau, & Stewart, 1998),
which, as observed by Buchholz, Ciardo, Donatelli, and Kemper (2000), is very efficient,

but only when the matrices R
(k)
e are not “too sparse.” (The perfect shuffle pre- and post-

multiplications are essentially free; they simply describe a different state indexing.)

Then, the disjunctive-then-conjunctive approach extends the Kronecker expression of
Re to allow situations where the factors are not restricted to a support consisting of just
one variable, but still exploits each factor’s locality:

Re =
∏

1≤c≤m
P
S

(c)
e

> ·
(
I
S

(c)
e

⊗R
S

(c)
e

)
· P

S
(c)
e

(77)

where P
S

(c)
e

> and P
S

(c)
e

are perfect shuffle permutations that respectively move all de-

pendent state variables in S
(c)
e at the end of the variable order and back to their original

position, I
S

(c)
e

is the identity matrix of size
∏
Xh 6∈S(c)

e
nh (the skipped levels), and R

S
(c)
e

is

a square matrix of size
∏
Xh∈S(c)

e
nh (the conjunct encoded by an EV∗MDD if we ignore the

skipped levels corresponding to state variables not in S
(c)
e ).

Since the supports S
(c)
e are disjoint, this generalization of the Kronecker approach comes

at no additional cost and essentially corresponds to a Kronecker approach where we allow
each event to be defined on a different set of state variables, each set corresponding to
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a different partition of the “basic” state variables (X1, .., XL). In this case, building the
EV∗MDD for Re by multiplying the EV∗MDDs for each R

S
(c)
e

does not involve any numeric

multiplication, but it grows the size of the diagram if the spans of the sets S
(c)
e are not

disjoint; for example, if S
(1)
e = {X3, X7} and S

(2)
e = {X4, X6}, then each path from X7 to

X3 in the EV∗MDD for Re will contain a copy of the entire EV∗MDD encoding Re(2) .

4.5.4 Numerical Solutions with Decision Diagrams

We have described a method for storing the rate or intensity matrix compactly for common
process models. We now address the use of these data structures in CTMP computations.
The literature surrounding decision diagrams and CTMPs is primarily concerned with com-
putation of the unconditional distribution of the resulting process, either at a finite time or
(more commonly) in the limit of infinite time (the stationary distribution). We follow the
convention of this literature and refer to this as the solution of the process. Model estima-
tion, solutions conditioned on evidence, and computations of marginals or other statistics
are, to our knowledge, unexplored for these representations, but we return to this later.

When matrix R is stored using 2L-level EV∗MDDs (using a monolithic, a disjunctive
partition, or a disjunctive-then-conjunctive partition encoding), the traditional numerical
solution algorithms need to be adjusted accordingly. First of all, when seeking an exact
solution, neither the stationary vector π nor the transient vector π(t) admit a compact
EV∗MDD representation (unless the modeled system contains extensive symmetries or is
composed of completely independent subsystems, which is rarely the case in practice).

Two approaches have been explored. For an exact solution for the stationary distribution
π (the null-space of Q), a hybrid approach (Kwiatkowska, Norman, & Parker, 2004) is
usually best, where the solution is stored as a full vector of reals having size equal to the
number of reachable states (|Xrch|, equal to |X| only if all states are reachable) while the
rate matrix R is stored with EV∗MDDs, and the expected holding time vector h (the inverse
absolute values of the diagonal of Q) is stored either as a full vector or with EV∗MDDs.
Clearly, such an approach scales the size of the tractable problems by eliminating the main
memory obstacle (the storage of R), only to encounter the next memory obstacle (the
storage of the solution vector). For example, Figure 12 shows the pseudocode for a classic
Jacobi-style stationary solution of an ergodic CTMP when the transition rate matrix is
monolithically encoded by the EV∗MDD 〈σ,r〉, while the state space Xrch is indexed by an
EV+MDD 〈0,p〉, as previously discussed, so that, for each i ∈ X, we can compute φXrch

(i),
an index between 0 and |Xrch| − 1 included if i ∈ Xrch, or ∞ if i 6∈ Xrch. Function
φXrch

is used to index entries of the solution vector: πnew and πold. The holding time
vector is stored as the full vector h, also indexed by φXrch

(but it could have been stored
using EV∗MDDs instead). At each recursive call of JacobiRecur, we descend a “from”
and a “to” level from the current rate matrix EV∗MDD node and a single level from the
corresponding “source” and “destination” EV+MDD nodes (these are needed to index the
full vectors of reals, and are initially both set to 〈0,p〉, encoding the entire φXrch

function).
Note that, in the simple case when all states are reachable (that is, X = Xrch) the indexing
function φXrch

is just the mixed-base value φ(i) =
∑

1≤k≤L ik · n1:k−1 discussed in Section
4.3 and, as such, it does not really require an EV+MDD for its encoding; on the other hand,
as shown in Figure 9, this EV+MDD is just a single path of nodes, so its use does not carry
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. Computes π such that πQ = 0. 〈σ,r〉 is R, 〈0,p〉 is φXrch

function JacobiIteration(EV∗MDD〈σ,r〉,EV+MDD〈0,p〉)
πold ← “initial guess” . Real vector of size |Xrch|, visible to JacobiRecur
num iter ← 0
repeat
πnew ← zero vector . Real vector of size |Xrch|, visible to JacobiRecur
JacobiRecur(L,〈σ,r〉,〈0,p〉,〈0,p〉)
for all i ∈ {0, . . . , |Xrch| − 1} do
πnew[i]← πnew[i] · h[i] . h is the holding time vector

swap(πold, πnew)
num iter ← num iter + 1

until num iter > MAX ITER or Converged(πold,πnew)
. for example, using a relative or absolute test

. Computes πnew ← πoldR
function JacobiRecur(level k, EV∗MDD〈σ,m〉, EV+MDD〈ηsrc,src〉,
EV+MDD〈ηdes,des〉)

if src = des = Ω then
πnew[ηdes]← πnew[ηdes] + πold[ηsrc] · σ
return

for i from 0 to nk−1 s.t. m[i].val 6= 0 and src[i].val 6=∞ do . “from” level k
for j from 0 to nk−1 s.t. m[i][j].val 6= 0 and des[j].val 6=∞ do . “to” level k′

η′src ← ηsrc + src[i].val
η′des ← ηdes + des[j].val
σ′ ← σ ·m[i][j].val
JacobiRecur(k−1, 〈σ′,m[i][j].ch〉, 〈η′src,src[i].ch〉, 〈η′des,des[j].ch〉)

Figure 12: A Jacobi-style iteration for the stationary solution (πQ = dπ
dt = 0) when R

(non-diagonal elements of Q) is stored as a monolithic EV∗MDD and h (inverse
absolute value of the diagonal elements of Q) is stored in a vector. 〈σ,r〉 is the
encoding of R and 〈0,p〉 is the encoding of the mapping from states to indices
(for π and h).

any overhead. A similar hybrid approach can be used to compute a transient solution using
a uniformization-style algorithm where R is also stored using EV∗MDDs but, again, the
size of the full vectors limits scalability.

The filtering and smoothing operations as described in Section 2.5 have not been ex-
plicitly tackled for decision-diagram encodings. However, if we are willing to represent
the distribution exactly (as above), we can do the necessary vector-matrix multiplications
directly on the decision-diagrams (without expanding them). Estimating an EV∗MDD rep-
resentation of R from data is completely unexplored.

To tackle larger problems we must instead be willing to accept an approximate solution.
However, work in this area is mostly restricted to systems exhibiting special structures.

754

39
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Tutorial on Structured Continuous-Time Markov Processes

One exception is the work of Wan et al. (2011), which addresses the stationary solution of
arbitrary ergodic CTMPs whose state space is encoded as an MDD and whose transition rate
matrix is encoded as one or more EV∗MDDs. The approach uses L different approximate
aggregations of the exact CTMP and solves them iteratively, until reaching a fixpoint.
This approach provides an exact solution under certain conditions — essentially, if the
system has a so-called “product-form” (Baskett, Chandy, Muntz, & Palacios-Gomez, 1975).
Unfortunately, no similar approximation for the transient solution of a structured CTMP
has been proposed so far.

Thus for state spaces large enough that a single vector over their values cannot be
maintained, the literature for inference and estimation with these models is very limited.
However, in the next section we describe a different model that can be viewed as a restricted
form of the disjunctive EV∗MDD encoding of this section. This model has many inference
and estimation method and we believe this link between the two may allow for those methods
to be extended to more general decision-diagram representations.

5. Continuous-Time Bayesian Networks

In the artificial intelligence and machine learning literatures, continuous-time Bayesian net-
works (CTBNs) (Nodelman, Shelton, & Koller, 2002) were developed as an extension of
dynamic Bayesian networks (DBNs). As we discuss in this section, they are a more limited
case of the disjunctive EV∗MDD encodings above. However, approximate methods and
computations conditioned on evidence have been more extensively developed for CTBNs.

A CTBN consists of a set of variables, {X1, X2, . . . , XL}, a directed graph G with a one-
to-one mapping between the nodes and the variables, a set of conditional intensity matrices
for each variable, and an initial distribution. The initial distribution is usually described
as a Bayesian network (to keep its description compact), but many of the algorithms and
theory hold for other compact distribution representations.

The graph G describes instantaneous influence of variables on each other. An edge from
Xi to Xj denotes that the rates of transitions of Xj depend on the instantaneous value of
Xi. Note that G may be cyclic.

These dependent rates are captured in the conditional intensity matrices. Let ni be
the number of states for variable Xi. We denote the parents of variable Xi as Pari and a
joint assignment to Pari as pari. The set of conditional intensity matrices for variable Xi

consists of one ni-by-ni intensity matrix for each possible instantiation pari: QXi|pari for
which we denote element xi, x

′
i as qxi,x′i|pari , the rate of Xi transitioning from xi to x′i when

Pari have values pari.

Semantically, a CTBN is a continuous-time Markov process over the joint state space of
all constituent variables. We let δ(x,x′) be equal to the set of variables whose assignments
differ between joint assignments x and x′. The joint intensity matrix for the entire process
can be described as

qx,x′ =





∑L
i=1 qxi,x′i|pari if δ(x,x′) = {}

qxi,x′i|pari if δ(x,x′) = {Xi}
0 otherwise

(78)
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X2

X1

X3

QX1|X2=0 =

[
−1 1
2 −2

]

QX1|X2=1 =

[
−4 4
3 −3

]

QX2|X1=0 =

[
−5 5
6 −6

]

QX2|X1=1 =

[
−7 7
8 −8

]

QX3|X2=0 =



−9 0 9
8 −10 2
7 4 −11




QX3|X2=1 =



−12 6 6

8 −13 5
7 7 −14




Figure 13: An example CTBN graph. See Figures 14, 15, and 17 for the same CTMP in
other representations.

where pari is the assignment to Pari in x. The intensity of transition between two states
that differ only by one variable can be read from the appropriate conditional intensity matrix
for that variable. The intensity of transition between any other two states (that differ by
more than one variable) is zero. The diagonal elements are filled in to be the negative row
sums. This process allows two variables to transition at arbitrarily close times, but not at
exactly the same time.

A CTBN retains the local Markov properties of a standard Bayesian network. In partic-
ular, a variable (local process) is independent of its non-descendants, given its parents. Of
course, because of cycles, parents may also be descendants, but this does not pose a problem
to the definition. Note, however, that given refers to conditioning on the entire trajectory
of a variable (from the starting time until the ending time, after which no variables are
queried or observed). Conditioning on the current value is not sufficient (even for rendering
only the current values independent).

The global Markov properties also hold. The Markov blanket for a variable is the union
of the sets of its parents, its children, and its children’s parents. Note that these sets can
have significant overlap, as cycles are permitted. Conditioned on its Markov blanket, a
variable is independent of all other variables.

5.1 Connections to Other Representations

A CTBN can be related to a number of other representations. For instance, Portinale and
Codetta-Raiteri (2009) link CTBNs to stochastic Petri nets (Ajmone Marsan, Balbo, Conte,
Donatelli, & Franceschinis, 1995). Donatelli (1994) shows the translation from stochastic
Petri nets to Kronecker operators and Ciardo, Zhao, and Jin (2012) show the translation
from (ordinary, timed, or stochastic) Petri nets to various classes of decision diagrams.
However, below we concentrate on more direct comparisons of the approaches presented in
this tutorial.

Figure 13 shows a simple small CTBN of two binary variables (X1 and X2) and one
ternary variable (X3). We will use this as a running example for how to convert from a
CTBN to other compact representations.
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X2

X1

X3

X ′2

X ′1

X ′3

time = t time = t+ δt

P (X ′1|X1, X2) :

0, 0 1, 0 0, 1 1, 1

0 1−1δt 2δt 1−4δt 3δt
1 1δt 1−2δt 4δt 1−3δt

P (X ′2|X2, X1) :

0, 0 1, 0 0, 1 1, 1

0 1−5δt 6δt 1−7δt 8δt
1 5δt 1−6δt 7δt 1−8δt

P (X ′3|X3, X2) :

0, 0 1, 0 2, 0 0, 1 1, 1 2, 1

0 1−9δt 8δt 7δt 1−12δt 8δt 7δt
1 0 1−10δt 4δt 6δt 1−13δt 7δt
2 9δt 2δt 1−11δt 6δt 5δt 1−14δt

Figure 14: A DBN whose limit as δt→ 0 approaches the CTBN of Figure 13.

5.1.1 Connection to DBN

From a CTBN, we can construct a dynamic Bayesian network (DBN) whose parameters are
a function of the time between slices such that its limit as this time-slice width approaches
zero is the original CTBN. In particular, the DBN has no intra-time-slice edges (this is
because two variables in the CTBN cannot change at exactly the same time). If Xi has
parents Pari in the CTBN, then it has the same parents (at the previous time slice) plus
its previous value in the DBN. Figure 14 shows the CTBN of Figure 13 as a DBN. If Xi in
the CTBN has an intensity matrix QXi|pari for parent values pari, then the corresponding
variable in the DBN has the conditional probability distribution

pDBN(x′i|xi,pari) = δx′i,xi + δt qxi,x′i|pari (79)

where x′i is the value of Xi at the “next” time step (and xi and pari are the values at the
“previous” time step), δx′i,xi is 1 if x′i = xi and 0 otherwise, and δt is the time between time
slices. The limit of this process as δt approaches 0 is the original CTBN.

5.1.2 Connection to Kronecker Algebra

The joint intensity matrix expressed in Equation 78 can also be written as a sum of Kro-
necker products. We need first to define a conceptually simple, but notationally cumber-
some, term. First, let ∆i,j be a matrix of all 0, except for a single 1 in location i, j (same as
before). Second, let Q̃Xi|pari denote the Kronecker product of one matrix for each variable
in the CTBN. If the variable is Xi, the matrix is QXi|pari . If the variable is a parent of Xi

and has value xk in pari, then the matrix is ∆xk,xk . Otherwise, the matrix is the identity
matrix. In this way this Kronecker product distributes the elements of QXi|pari to the
relevant entries of the joint intensity matrix.

We can now define the joint intensity matrix. Let Q̃Xi
be
∑

pari
Q̃Xi|pari . Then,

Q =
∑

i Q̃Xi
. Figure 15 gives an example for the CTBN of Figure 13. Figure 16 gives

another example. While the Kronecker product in general does not handle the diagonal
elements, the expansion works for the intensity matrix in this case, since only one of the
matrices in each product is non-diagonal.
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Q̃X1
=
∑

x2

QX1|x2
⊗∆x2,x2 ⊗ I

Q̃X2
=
∑

x1

∆x1,x1 ⊗QX2|x1
⊗ I

Q̃X3
=
∑

x2

I ⊗∆x2,x2 ⊗QX3|x2

Q = Q̃X1
+ Q̃X2

+ Q̃X3

Figure 15: Sum of Kronecker encoding of the rate matrix Q of the CTBN in Figure 13.

X Y

Z

W

Q̃W = QW ⊗ I ⊗ I ⊗ I
Q̃X =

∑

z

I ⊗QX|z ⊗ I ⊗∆z,z

Q̃Y =
∑

w

∆w,w ⊗ I ⊗QY |w ⊗ I

Q̃Z =
∑

x,y

I ⊗∆x,x ⊗∆y,y ⊗QZ|x,y

Q = Q̃W + Q̃X + Q̃Y + Q̃Z

Figure 16: Sum of Kronecker product encoding of a CTBN with more than one parent per
node.

5.1.3 Connection to Decision Diagrams

The above decomposition of a CTBN into a sum of Kronecker products helps clarify the
connection to the edge-valued decision diagrams of the previous section. A CTBN is a
particularly structured version of the disjunctive EV∗MDD encoding of Section 4.5.1 paired
with the identity encoding of Section 4.5.2. In particular, a CTBN describes a CTMP
which can also be described by a sum of EV∗MDDs in fully-identity-reduced form. The two
descriptions have the same order space complexity. The decision-diagram encoding has one
EV∗MDD for each variable and each joint value for its parents.

Figure 17 shows the disjunction of EV∗MDDs for the CTBN in Figure 13. Each EV∗MDD
only encodes the non-identity matrices in the Kronecker product expression; the identity
matrices are implied by the fully-identity-reduced form. As another example, for the CTBN
in Figure 16, we could construct 9 EV∗MDDs: 1 for W , 2 for each of X and Y , and 4 for Z.
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Ω ΩΩΩΩΩ

x3

x′3

x2

x′2

x1

x′1

RX1|X2=0 RX1|X2=1 RX2|X1=0 RX2|X1=1 RX3|X2=0 RX3|X2=1

2 4 6 8 9 8

5/6 7/8

3/41/2 1

1 1

1

11

1

1 1

1 1 1 1 1

1

1

1

1 11/4 5/84/7

6/8 7/81 8/9 7/9

0 1 2 0

0 000

0

1

00

0 0

0

0

0 1 11 1

1 1 1

1

1

11 1 1

0 011

1

11

01

1

1

2 2 2 2

21

Figure 17: A set of identity-reduced EV∗MDDs whose sum is the same as the CTBN of
Figure 13.

Note that a disjunction of EV∗MDDs can compactly encode structure within a variable’s
local rate matrix, while a CTBN cannot. In this way, they represent a generalization that
can exploit context-sensitive independence.

Whether merging EV∗MDDs for a given variable or merging EV∗MDDs for multiple
variables will result in a reduction or increase in the representation size is largely an empirical
question. However, we would generally expect an increase in size because only one transition
is allowed at a time, so the paths through the levels must remember whether any previous
variable has changed and, if so, which one (for example, as in Figure 11).

5.2 Sampling

Sampling from a CTBN can be done by straight-forward application of the sampling method
described in Section 2.1. We need not construct the full intensity matrix. Instead, for any
joint assignment x, we can find the diagonal element by summing the diagonals of the
relevant conditional intensity matrices. This gives us the rate of the exponential to sample
for the time to the next variable change. We can read the intensities for each variable’s
potential transitions from the relevant row of its conditional intensity matrix and we select
a variable and the new state for that variable in proportion to the intensity. This process
takes O(L) time for each transition (where L is the number of variables).

We can do better by exploiting the racing and memoryless properties of exponential
distributions (discussed in Section 2.1). To select which variable transitions next, we will
race exponential distributions for each variable with rates of the corresponding diagonal
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function SampleCTBN(CTBN, initial distribution π0, end time T )
Let Tr ← empty trajectory
Let (x1, x2, . . . , xL)← joint sample from π0 . As per algorithm for π0’s

representation
for i from 1 to L do

Add (Xi = xi @ 0) to Tr
Let t← 0
Let E ← an empty event priority queue of time-variable pairs.
repeat

for all variables Xi that do not have an event in E do
Sample ∆t from an exponential with rate qxi|pari
Add 〈t+ ∆t,Xi〉 to E

Let 〈t,Xi〉 ← the earliest event in E . Update t and get new variable to change
if t < T then

Sample x′i from a multinomial proportional to qxi,x′i|pari
Let xi ← x′i . Update local copy of variable assignments
Add (Xi = xi @ t) to Tr
Remove Xi and all children of Xi from E . Their times must be resampled

until t ≥ T

Figure 18: Algorithm to sample from CTBN

elements of their conditional intensity matrices. We then note that if a variable is not
chosen, we can treat its transition time as two separate random draws: a draw stating
that its transition time is after the chosen time and a draw stating when after the chosen
transition time it will next transition (because of the memoryless property of the exponential
distribution). That means that if the chosen transition did not affect the rate for the variable
in question, we do not need to resample its transition time. By using a priority queue for
transitions times (not durations), we can reduce the running time per transition to O(D lnL)
where D is the maximal out-degree of the graph. This method is made explicit in Figure 18.

5.3 Inference

Inference in a CTBN is the process of calculating an expected value of the full trajectory,
given some partial trajectory. The most basic case is to infer the conditional probability of a
single variable at a single time point (the expectation of an indicator function) given a partial
trajectory. There are many ways in which a trajectory may be partial. The most obvious
for a variable-based model like a CTBN is to have variables only observed at particular
times and intervals. Each variable can have its own observation times and intervals. Thus,
for each variable, we assume we have evidence like that of Section 2.5.1: There are time
points at which the variable has known values and there are time intervals during which
the variable has known values (which might include observations of transitions).

Unfortunately, even if there is no evidence, this problem is NP-hard. In particular,
deciding whether the marginal probability of a single value of a single variable at a single
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time point is greater than any positive threshold is NP-hard. This has been generally
accepted, although never formally demonstrated. We provide the proof in the Appendix.

Thus, all known algorithms for CTBN inference have exponential (in the number of
variables) running time. The simplest method is to treat the CTBN as a general CTMP with
a single intensity matrix Q. We can apply the forward and backward passes of Section 2.5.
While the intensity matrix can be stored in compact form, the resulting vectors require
space for each instantiation to every variable in the CTBN (exponential space). We need
only keep values for states consistent with the evidence. Thus, if at all times only a few
variables are unobserved, the inference is tractable. But, if there are periods during which
many variables are unobserved, we require approximate inference methods (overviewed in
Section 5.5).

Other than calculating the probability of a variable at a time, the other common case
of inference is to calculate the expected sufficient statistics. As shown in Section 5.4.1, this
means calculating N̄ [xi, x

′
i|pari] and T̄ [xi|pari] for all values of i, xi, x

′
i, and pari. The

former is the expected number of times variable Xi transitioned from xi to x′i while its
parents were in state pari, and the latter is the expected amount of time variable Xi was
in state xi while its parents were in state pari.

The proof for marginal calculation can easily be adapted to show that deciding whether
these quantities are non-zero is also NP-hard. Therefore, the only known method is to
again treat the system as a general CTMP with a single large Q matrix. We can then
apply Equation 65 and Equation 64 to find the expected number of transitions and expected
amount of time for any joint assignments. If we let J(xi,pari) be the set of joint assignments
to all variables that are consistent with Xi = xi and Pari = pari, we can find the expected
sufficient statistics for the CTBN as

T̄ [xi|pari] =
∑

x∈J(xi,pari)

T̄ [x] (80)

N̄ [xi, x
′
i|pari] =

∑

x∈J(xi,pari)

∑

x′∈J(x′i,pari)

N̄ [x,x′] (81)

5.4 Parameter and Graph Estimation

The initial distribution of a CTBN can be estimated separately using any standard method
for estimation of a Bayesian network (or whatever other compact representation is desired).
This requires only data about the value of the trajectory’s value (or trajectories’ values) at
time 0.

We will concentrate on estimation of the rate parameters and dynamics graph struc-
ture (G). This exposition will assume there is a single trajectory, Tr. However, multiple
trajectories can be used by summing their sufficient statistics.

5.4.1 Parameter Estimation

The set of CTBNs with a fixed graph structure is just a subset of the exponential family of
CTMPs in which most parameters are fixed to 0 and many of the remaining ones are tied
to each other (share the same value). Thus, the log-likelihood of Equation 30 applies here
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too, but where the sufficient statistics for tied parameters are summed:

ln pCTBN(Tr) = lnP0(Tr(0)) +
∑

i,pari,xi


−T [xi|pari]qxi|pari +

∑

x′i 6=xi
N [xi, x

′
i|pari] ln qxi,x′i|pari




(82)

= lnP0(Tr(0)) +
∑

i,pari,xi,x
′
i 6=xi

(
−T [xi|pari]qxi,x′i|pari +N [xi, x

′
i|pari] ln qxi,x′i|pari

)

(83)

= lnP0(Tr(0)) +
∑

i

lXi(Tr) (84)

where i ranges over variables, pari ranges over joint assignments to the parents of i, and
xi and x′i range over differing assignments to Xi. T [xi|pari] denotes the amount of time
Xi = xi while Pari = pari. Similarly, N [xi, x

′
i|pari] denotes the number of transitions of

Xi from xi to x′i while Pari = pari. These new sufficient statistics are sums of the sufficient
statistics of the flat CTMP, summing over all assignments to all CTBN variables in which
Xi and Pari remain the same (see Equations 80 and 81). Given a complete trajectory, we
can construct them directly without employing such (exponentially large) sums. The last
line above is by definition of lXi , the “local log-likelihood” of variable Xi. Note that this is
a function only of the trajectories of Xi and its parents (not of all of Tr).

Maximizing Equation 83 is a straight-forward extension of maximizing Equation 30:

q̂xi,x′i|pari = N [xi, x
′
i|pari]/T [xi|pari] . (85)

We can produce Bayesian posterior distributions over the parameters if we take independent
conjugate prior distributions over each qxi,x′i|pari parameter (Nodelman et al., 2003). Just
as for a flat CTMP, our conjugate prior is a gamma distribution with hyper-parameters
αxi,x′i|pari and τxi,x′i|pari for parameter qxi,x′i|pari . The resulting posterior is also a gamma
distribution with corresponding hyper-parameters αxi,x′i|pari+N [xi, x

′
i|pari] and τxi,x′i|pari+

T [xi|pari]. Thus the MAP parameter estimates are

q̂xi,x′i|pari =
N [xi, x

′
i|pari] + αxi,x′i|pari

T [xi|pari] + τxi,x′i|pari
. (86)

5.4.2 Structure Estimation

Estimating the CTBN structure could be accomplished by statistical tests of the indepen-
dence of the processes. Yet, we are unaware of any methods that use this or of suitable
independence tests.

Instead, CTBN structures have been estimated by graph scoring functions. If the score
function decomposes as the likelihood does (Equation 83) into a sum of terms, one per
variable, in which the selection of a variable’s parents only affects the term for the same
variable, the search for the maximal scoring graph is very simple. Each variable’s parents
can be chosen independently by maximizing the corresponding term in the sum. While
there are an exponentially large (in the total number of variables) number of parent sets
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to consider for each variable, if we limit the cardinality of parent sets to no more than D,
then each variable’s parents can be chosen by exhaustive search and the total running time
is O(L2D), which is linear in the number of variables, L.

This is in contrast to Bayesian networks where a similar strategy does not lead to
an efficient algorithm (unless a variable ordering is known a priori). Learning CTBNs
structure is efficient because there are no restrictions on the graph: A CTBN’s graph may
be cyclic. A similar situation arises with dynamic Bayesian networks (DBNs). If we only
allow inter-time-slice edges (those from the “previous” time point to the “current” time
point), the graph structure may be searched efficiently, like in CTBNs. However, if we
allow intra-time-slice edges (those within the “current” time point) in a DBN, we must
enforce acyclicity constraints and the search is no longer efficient.

The Bayesian information criterion (Lam & Bacchus, 1994) can be made into a score:

scoreBIC(G : Tr) =

(∑

i

lXi(Tr)
)
− ln |Tr|

2
Dim(G) (87)

=
∑

i

(
lXi(Tr)−

ln |Tr|
2

∣∣∣QXi|pari

∣∣∣
)

(88)

where Dim(G) is the number of independent parameters in the network defined by the

graph G and
∣∣∣QXi|pari

∣∣∣ is the number of independent parameters in the conditional intensity

matrices associated with Xi. This second term is equal to ni(ni − 1) (because the diagonal
elements are not independent) times the number of parent instantiations. The data size,
|Tr|, is the number of transitions in the trajectory Tr (or in the total data set if it consists
of multiple trajectories). This score is consistent (Nodelman et al., 2003) because the term
lXi(Tr) grows linearly with the amount of data and represents the likelihood and the second
term grows logarithmically with the amount of data and penalizes excess parameters.

A Bayesian score can also be constructed by placing a prior on graphs (as well as
parameters) and finding the maximum of lnP (G | Tr) = ln p(Tr | G)+lnP (G)−ln p(Tr). The
last term isn’t affected by the choice of G, so we drop it. We assume structure modularity:
lnP (G) =

∑
i lnP (Pari). The remaining data term, lnP (Tr | G), is the (logarithm of the)

integral of the likelihood multiplied by the prior, over all possible parameter values. Using
the independent gamma priors from above, this decomposes into a separate term for each
variable (dropping the lnP0(Tr(0)) term which does not affect the choice of G):

ln p(Tr | G) =
∑

i,pari,xi 6=x′i

ln

∫ ∞

0

(τxi,x′i|pari)
αxi,x

′
i
|pari

+1

Γ(αxi,x′i|pari + 1)
exp

[
−(T [xi|pari] + τxi,x′i|pari)qxi,x′i|pari

+(N [xi, x
′
i|pari] + αxi,x′i|pari) ln qxi,x′i|pari

]
dqxi,x′i|pari

(89)

=
∑

i

∑

pari,xi 6=x′
i

ln

(
(τxi,x′

i|pari)
αxi,x

′
i
|pari

+1

Γ(αxi,x′
i|pari + 1)

Γ(N [xi, x
′
i|pari] + αxi,x′

i|pari + 1)

(T [xi|pari] + τxi,x′
i|pari)

N [xi,x′
i|pari]+αxi,x

′
i
|pari

+1

)

(90)

=
∑

i

lscoreB(pari : Tr) (91)
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where the last line is by the definition of lscoreB. This derivation is almost the same as the
one given in Nodelman et al. (2003). The difference is that our prior consists of a gamma
distribution for each independent variable whereas their prior consists of a gamma distribu-
tion for each diagonal rate parameter and a Dirichlet prior over the ratios qxi,x′i|pari/qxi|pari .
The two are equivalent, but parameterized differently.

The Bayesian score is therefore

scoreB(G : Tr) =
∑

i

lscoreB(pari : Tr) + lnP (Pari) . (92)

It converges to the BIC score in the limit of infinite data (Nodelman et al., 2003) and is
therefore also consistent.

5.4.3 Incomplete Data

For the case where the trajectory Tr is incomplete, we are back in the same situation as in
Section 2.6. As the likelihood takes the same form in a CTBN as in a general CTMP, the
solutions for maximizing the likelihood of this incomplete trajectory have the same form.
Namely, if we compute the expected sufficient statistics (using inference), we can apply
gradient ascent or expectation-maximization to find the maximum likelihood parameters.
The gradient is

∂p(Tr)
∂qxi,x′i|pari

= p(Tr)
(
N̄ [xi, x

′
i|pari]

qxi,x′i|pari
− T̄ [xi|pari]

)
(93)

and the expectation-maximization update equation is the same as Equation 85 except the
sufficient statistics are replaced by their expected values, given the partially observed tra-
jectory and the current model.

For graph estimation, we can apply structural expectation-maximization (Friedman,
1997) (SEM) to CTBNs (Nodelman, Shelton, & Koller, 2005). While SEM for Bayesian
networks can be a little complex due to the structure search step, for CTBNs, it is simpler
as the structure search step need not enforce acyclicity constraints and therefore can be
carried out more simply (see above). The tricky point (which also holds for standard
Bayesian networks) is that the graph search scoring function must be calculated using
expected sufficient statistics and therefore, given a current model, our inference algorithm
must produce expected sufficient statistics not only for the current model’s parent sets,
but also for any other parent sets to be considered by the structure search. If using exact
inference (by flattening the CTBN to a general CTMP), these are available. However,
approximate methods (below) differ in how simple it is to extract such expected sufficient
statistics. Once this inference is performed, a joint optimization of parameters and structure
is performed, the new model is used to find new expected sufficient statistics, and the process
repeats.

5.5 Approximate Inference

As mentioned in Section 5.3, exact inference is intractable when there are many concurrently
missing variables. Therefore, many approximate inference methods have been developed.
We briefly cover them in this section, but would refer to the full papers for more complete
descriptions.

764

49
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Tutorial on Structured Continuous-Time Markov Processes

5.5.1 Sampling-Based Inference

Sampling is an obvious method for producing approximate inference. It has a number of
advantages. First, it produces a set of full trajectories from which any inference question can
be answered. Second, most sampling methods converge to the correct value if allowed to run
long enough. Third, sampling methods are usually easily parallelized, lending themselves
to multiple processors and multiple cores.

Hobolth and Stone (2009) have a description of a number of such methods for the
unstructured case and for full evidence at the beginning and the end of the trajectory, but
no evidence in between. Here we discuss work on CTBNs and for more general evidence
patterns.

Fan and Shelton (2008) and Fan, Xu, and Shelton (2010) developed an importance
sampler and a particle filter and smoother. Forward sampling (like in Figure 18) can be
turned into an importance sampler by taking the observed data as given and sampling for
the missing portions, marching time along. The weight of the sample is the probability of
having sampled the observed data (which was not sampled) given the trajectory up to those
data. The problem arises when a variable goes from being not observed to being observed.
In this case, the sampling must agree with “up coming” observation evidence. Adding a
transition exactly when the evidence starts is not correct (as there is almost surely not an
event at that time). These samplers handle it with some forward look ahead to sample
the necessary transition in advance, with suitable importance weight corrections. This is
then extended to a particle filter and smoother which are resampled based on the number
of transitions, rather than the absolute time. This method was extended to more general
temporal models by Pfeffer (2009).

El-Hay, Friedman, and Kupferman (2008) developed a Gibbs sampler for CTBN models.
They start with a simply developed trajectory that agrees with all of the evidence. Then,
the algorithm removes a single variable’s full trajectory and resamples it (keeping any time
periods during which the value is known). Conditioned on the full trajectories of a variable’s
Markov blanket (the union of the variable’s children, parents, and children’s parents), the
trajectory for that variable is independent of all other variables, so the sampler needs to
only consider the variable’s Markov blanket. The posterior distributions over the times of
transitions are no longer exponential distributions. Their forms are complex and thus the
Gibbs sampler must sample by performing binary search.

Fan and Shelton (2009) combined the ideas from the Gibbs sampler and their earlier
work on importance sampling to produce a Metropolis-Hastings sampler. The importance
sampling method is used instead of Gibbs sampling and the importance weight is used to
find the acceptance probability. While faster to generate samples, the samples take longer
to converge. The balance of the trade-off depends on the typicality of the evidence and the
inference query.

Rao and Teh (2011, 2013) used uniformization to develop an auxiliary Gibbs sampler
which is faster than the previous Gibbs sampler. The auxiliary variables are the times
of the self-transitions from an uniformization sampler (Section 2.3). Thus to resample a
variable, the algorithm samples auxiliary times, given the old trajectory (which can be
done quickly). It then throws away all of the transitions, but keeps the full set of times
(old times and the new times). Then, using a forward-backward two-pass algorithm, state
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transitions are sampled from the uniformized discrete-time process (conditioned on the
evidence). Finally, the self transitions are discarded. Rao and Teh (2012) extended this to
a time-varying uniformization rate to speed up convergence, but only explicitly in the case
of an unstructured process.

5.5.2 Non-Sampling Methods

A number of other non-sampling methods have also been proposed. Their advantages
include determinism (often helpful when used inside of EM to keep the estimates consistent),
and fewer parameters that need to be set well (number of samples, length of burn-in, and
others).

Cohn, El-Hay, Kupferman, and Friedman (2009) and Cohn, El-Hay, Friedman, and
Kupferman (2010) derived a mean-field approximation. The approximate distribution is an
independent time-inhomogeneous Markov process for each variable. That is, the variables
are independent (in the approximation), but the intensities depend on time. The natural
parameterization also differs slightly. Instead of transition rates, transition densities are
used, but the idea is the same. The resulting algorithm changes one variable’s distribution at
a time, again depending only on the Markov blanket. The update involves solving a system
of differential equations (to get the time-varying parameters of the inhomogeneous Markov
process). These are solved by adaptive integration which means that less computation is
required during intervals of less rapid change. The result is that the time-varying parameters
are represented by a series of time-value points (those produced during adaptive integration)
and linear interpolation between these points.

Nodelman, Koller, and Shelton (2005) derived an expectation-propagation method. The
propagation uses piece-wise constant time-homogeneous Markov processes, where each piece
corresponds to a period of constant evidence. These piece-wise constant approximations are
propagated instead of the true marginals (as such marginals would be intractably large).
Saria, Nodelman, and Koller (2007) extended this method to subdivide the pieces of the
approximations further and adaptively. El-Hay, Cohn, Friedman, and Kupferman (2010)
produced a belief propagation algorithm in the same spirit as the mean-field approximation
above, employing a free energy functional for CTMPs. Instead of propagating piece-wise
time-homogeneous Markov processes, they propagate a single time-inhomogeneous Markov
process and then use the same adaptive integration representation as in mean-field. The
result is more adaptive and mathematically cleaner.

Finally, for filtering (but not general inference), Celikkaya, Shelton, and Lam (2011)
developed a factored version of a uniformized Taylor expansion to approximate the matrix
exponential calculations. The result is something similar to that of Boyen and Koller (1998)
for dynamic Bayesian networks, but also involving a truncation of an infinite sum and a
mixture of propagation distributions. This method is the only current non-sampling method
with accuracy bounds, although they are very loose.

5.6 Extensions

As shown above, a CTBN can be converted into a sum of decision diagrams. In that way
decision diagrams (and other similarly convertible models) can be viewed as extensions of
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CTBNs. Many of the non-Markovian processes of Section 1.1 could, if restricted in the right
way, also be so viewed. However, there are a few more direct extensions of CTBNs.

First, El-Hay et al. (2010) introduced continuous-time Markov networks (CTMNs).
They are undirected graphical models of Markov processes in the same way that CTBNs
are directed graphical models. They model the subclass of reversible processes, ones for
which detailed balance holds: There exists a distribution π (the stationary distribution of
the process) such that π(x)qx,x′ = π(x′)qx′,x for all pairs of states x and x′. A CTMN
can be converted to a CTBN by replacing each undirected edge with a pair of directed
edges. Their parameterization directly reveals the stationary distribution of the process as
a Markov network.

Second, Portinale and Codetta-Raiteri (2009) and Codetta-Raiteri and Portinale (2010)
showed an extension of CTBNs to allow for simultaneous transition of multiple variables. It
is based on Petri nets and encodes “cascades” of transitions that all happen simultaneously.

Finally, Weiss, Natarajan, and Page (2012) presented a method for constructing the
local rate matrices for each variable not as a matrix, but as the multiplication of regression
trees. This is akin to exploiting context-specific independence (Shimony, 1991) in a standard
Bayesian network by use of trees (Boutilier, Friedman, Goldszmidt, & Koller, 1996). This
multiplication of trees is not the same as our reduction of a CTBN to a sum of EV∗MDDs
(see Figure 17). In particular, their trees do not require the tests be made in a particular
variable order, they use trees instead of DAGS, and they multiply the trees together (instead
of adding them). Weiss et al. (2012) also give a boosting-style algorithm for learning this
parameterization. No similar method is known for learning a sum of EV∗MDDs.

6. Applications and Current Directions

To provide some context for the theory and algorithms above, we describe how these meth-
ods have been used in applications. We then discuss what we believe to be the most
promising and pressing research directions.

6.1 Decision-Diagram-Based Models

Structured CTMPs arise in many applications areas, from performance and reliability eval-
uation of computer systems to the investigation of biological systems. As the underlying
CTMPs describing the dynamics being analyzed are usually very large, most software tools
used for such studies rely on compact symbolic techniques to encode them.

In particular, PRISM (Kwiatkowska et al., 2011) uses a hybrid form of MTBDDs,
Möbius (Deavours et al., 2002) uses Matrix Diagrams (a data structure almost equivalent to
EV∗MDDs), and SMART (Ciardo et al., 2006) uses EV∗MDDs to encode the transition rate
matrix of a CTMP. These tools can compute both stationary and transient exact numerical
solutions of compactly encoded CTMPs. (Indeed, they can compute much more complex
stochastic temporal logic properties such as those that can be expressed in CSL (Baier,
Haverkort, Hermanns, & Katoen, 2000), but these, too, ultimately require a sequence of
stationary or transient numerical solutions.) While such exact solutions place very large
computational demands due to the exponential explosion of the state space, the situation
is often somewhat mitigated by the fact that, in most applications targeted by these tools,
the actual state space is a small subset of the full cross-product of the state variable values.
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As an example application, we briefly summarize a study done using PRISM for the
analysis of a complex biological pathway called FGF (Fibroblast Growth Factor) (Heath,
Kwiatkowska, Norman, Parker, & Tymchyshyn, 2006). The state of the system consists of
the number of proteins (e.g., A,B) or protein complexes (e.g., A:B) present at the current
time. The events in the system consist of various reactions such as complexation (e.g.,
A + B → A : B) and decomplexation (its reverse, A:B → A + B), as well as degradation
(e.g., A→). Finally, each event has an occurrence rate, which can of course depend on the
number of proteins currently present for the types involved in the particular reaction. The
actual model for the FGF pathway, even after substantial simplifications to focus only on
key and well-known aspects in real cells, contains 87 different proteins or protein complexes
(each of them corresponding to a local state variable) and 50 different reactions (if we count
complexation and decomplexation separately). We stress that each reaction concerns just
a few proteins or compounds; thus its decision diagram representation in isolation is quite
compact.

Even the smallest meaningful model where there is only zero or one protein or compound
of each type would have a potential state space of size 287. However, as almost always the
case in this type of models, only a tiny fraction of these states is reachable, thus the model
used in the work of Heath et al. (2006) has merely 801,616 states and 560,000 state-to-
state transitions. The study focused on several key questions such as what fraction of
time particular proteins are bound, or the probability that a particular degradation has
occurred within a given time bound, all quantities obtainable through numerical stationary
or transient analysis of the underlying CTMP. Notwithstanding the relatively small size
of the state space (which could likely be scaled by a factor of 1000, to around 108 states,
given a modern workstation with sufficient memory) the results and predictions obtained
from this model using PRISM were shown to agree with biological data, demonstrating the
viability of these technique to perform “in silico genetics” as a much less costly alternative
to the “in vitro” experiments traditionally performed in biology.

6.2 Continuous-Time Bayesian networks

CTBNs have been employed on a number of real-world datasets and problems including life
event history data (Nodelman et al., 2003), user activity modeling (Nodelman & Horvitz,
2003), computer system failure modeling (Herbrich, Graepel, & Murphy, 2007), mobile
robotics (Ng, Pfeffer, & Dearden, 2005), network intrusion detection (Xu & Shelton, 2008,
2010), phylogentic trees (Cohn et al., 2009), social networks (Fan & Shelton, 2009), car-
diovascular health model (Weiss et al., 2012), and heart failure (Gatti, Luciani, & Stella,
2012). Many of these also innovated in extending the CTBN framework. For instance, Ng
et al. (2005) allowed for continuous-state variables whose dynamics are dictated by differ-
ential equations. The form of evidence is more limited, but a particle filter is developed
for this situation. Cohn et al. (2009) applied the CTBN model to a “time-tree” to allow
branching (as first done in Felsenstein, 1981 for general CTMPs). Weiss et al. (2012) added
context-specific independence.

To give an idea of the application of CTBNs, we briefly review the intrusion detection
work of Xu and Shelton (2008, 2010). In this work, the goal was to build a model of normal
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Pin Pout Cinc Cdec

N

Figure 19: CTBN model for network traffic (Xu & Shelton, 2010). N is the number of
destination ports.

computer system events, specific to a particular machine. This model could then be used
to detect abnormal events or time windows as a method of intrusion detection.

Two models were built: one modeling network traffic in and out of the machine, and one
modeling system calls from processes. The network model was as in Figure 19. There is one
global hidden variable G with four states. The traffic is divided into different destination
ports (for instance, 80 for HTTP traffic and 995 for POP traffic). The most frequent
eight ports are separated out and the traffic from the remaining destinations are grouped
together. Each of these N = 9 groups has its own model (the plate in Figure 19). This
submodel has one hidden variable H and four completely observed binary variables, Pin,
Pout, Cinc, and Cdec, representing packets sent and received and connections started and
stopped respectively. These observed variables toggle state to represent an event of the
relevant type, but their state has no intrinsic meaning. Therefore, their matrices have only
a single independent parameter: the rate of transition from either state to the other. In
this way, these observed variables are really conditional Poisson processes.

The hidden variable H is structured to exploit domain knowledge. It has 8 states which
are grouped into pairs, one pair for each of its children. For each pair only one of its children
has a non-zero rate. Thus, H encodes what type of event will happen and some substate
of this meta-state.

The entire model has 4×89 or approximately 500 million hidden states (as the observed
variables are observed at all times, only the distribution over the G and the Hs need be
tracked). Yet, each submodel has only 8 hidden states, so exact inference over a submodel
is very reasonable. Thus, they adapted the particle filter and smoother of Fan and Shelton
(2008) to distributional particles, producing a Rao-Blackwellized particle filter in which G
is sampled and each of the models (which are independent, given a full trajectory of G) are
reasoned about exactly.

This inference method allows learning of specific models to each host using EM. These
models were then run on data in which computer virus or worm traffic had been injected
(very slowly to make it blend in with background traffic). The model was asked the likeli-
hood of 50-second window of traffic (given the previous traffic). This likelihood was thresh-
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olded to produce an alarm (if the likelihood dropped too low). The results out-performed
SVM-spectrum kernels, nearest-neighbor (using features from the computer network litera-
ture for this task), and other methods on this task and other similar tasks.

For process system calls, the model was similar, with a single hidden variable coordinat-
ing the behavior of a set of observed system-call variables. The dataset on which this model
was trained had time stamps for each system call. However, due to clock resolution, many
time stamps were the same. Yet, the temporal order was preserved (although the exact
durations between events was not). The paper demonstrates a method to use such data,
without assuming event durations, but employing the ordering. In this case, the results
were better than the SVM-spectrum kernel and nearest-neighbor and the same as stide
with frequency thresholding (Warrender, Forrest, & Pearlmutter, 1999).

6.3 Relative Comparison

Neither of the above two applications could currently be tackled with the other modeling
language. In the biological pathway example of Section 6.1, a transition in the system in-
volved more than one variable (increasing the number of protein complexes, while decreasing
the number of individual proteins). A CTBN cannot represent simultaneous transitions of
multiple variables. The pathways cannot be reformulated in terms of composite variables
to prevent such simultaneous transitions without placing all of the state in a single variable.

As a simpler example, consider a system of three variables, x, y, and z. A single event
performs three variable updates at the same time: {x′ ⇐ x+ y; y′ ⇐ y+ 1; z′ ⇐ z−1} with
rate r(x, y, z). We assume that each variable is a natural number in the range [0, . . . , n]
and that any update that would move a variable outside its range is disabled. Figure 20
demonstrates how an EV∗MDD can encode such a transition. Neither a Kronecker encoding
nor a CTBN can encode this event without merging variables.

Likewise, the network traffic example from Section 6.2 cannot be handled with current
decision-diagram-based models. It depends on hidden unseen variables and estimation of
transient solutions conditioned on data. More critically, it relies on estimation of the model
parameters from data, which has not been developed for decision-diagram models.

6.4 Current Research Directions

There are a range of open modeling, algorithmic, and theoretic problems. First, ques-
tions of steady-state distributions and efficient exact solutions have not been addressed for
CTBNs (as they have for EV∗MDDs). Similarly, questions of structure and parameter es-
timation and approximate inference have not been addressed for EV∗MDDs (as they have
for CTBNs).

Optimal decision making has been formulated as general continuous-time Markov deci-
sion processes (Puterman, 1994). Yet, extending the general mathematical framework to
structured variable-based models is largely unexplored (Kan & Shelton, 2008).

CTBNs were extended to handle continuous-valued variables and measurements in a
limited fashion (Ng et al., 2005), but otherwise this has been unexplored. For many ap-
plications this is critical. If the underlying system is discrete and the measurements are
continuous, techniques like those in Section 2.5 work. But, systems with continuous state
require stochastic differential equations (Øksendal, 2003), at least in some form. The work
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x 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
y 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
z 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

x′ – – – – – – – – – 0 1 2 1 2 – – – – 0 1 2 1 2 – – – –
y′ – – – – – – – – – 1 1 1 2 2 – – – – 1 1 1 2 2 – – – –
z′ – – – – – – – – – 0 0 0 0 0 – – – – 1 1 1 1 1 – – – –
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Figure 20: An example of an EV∗MDD encoding simultaneous transitions of multiple vari-
ables. Top: the 10 possible transitions and resulting states (dash indicates
disabled) from state (x, y, z) to state (x′, y′, z′). Bottom, left: worst case for
an arbitrary set of 10 rates for r(x, y, z). Bottom, right: best case when
r(x, y, z) = r1(x, y)r2(z). A dot indicates a positive value (used to encode the
particular rates). In each block of dots, one must be equal to 1 and the others
must be ≤ 1.

of Särkkä (2006) describes filtering and smoothing in such models. Yet, parameter estima-
tion is much more difficult and systems with both continuous and discrete state variables
have not been systematically addressed.

Finally, new approximate inference methods are always of interest (as with any prob-
abilistic model). Recent methods such as the auxiliary Gibbs sampler (Rao & Teh, 2013)
and belief propagation (El-Hay et al., 2010) demonstrate that exploiting the properties of
continuous time can lead to great benefits. We hope that further research explores more
such methods.
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7. Conclusions

Compared with discrete-time models, CTMPs are better suited for domains in which data
have real-valued time stamps (the time between events is not regular or well-approximated
by a single “clock step rate”). Thus, in selecting a value for the time-slice-width (∆t) for
a discrete-time model, either the time width will be large resulting in multiple events per
time window (obscuring temporal information), or it will be small resulting in unnecessary
computational burdens (propagating across many time windows). Further, the optimal
middle ground between too large and too small will differ depending on the data size, the
application, and the model component.

We have presented two different CTMP modeling languages. Edge-valued decision di-
agrams (of Section 4) are more general: They allow multiple variables to change simulta-
neously. By contrast, CTBNs directly encode independence assumptions (see Section 5).
Either an EV∗MDD or a CTBN might be more compact for a given situation, although any
CTBN can be compactly rerepresented as a sum of EV∗MDDs (see Section 5.1.3).

The models’ forms and histories have given rise to differences in available algorithms,
and here the distinctions are greater. The literature on exact solution methods is richer for
decision diagram models. Furthermore, this literature is more focused on computing the
model’s steady state. Approximate methods (especially for transients) and model estimation
are notably absent (from an artificial intelligence point-of-view). The literature for CTBNs
is more focused on model estimation and approximate inference conditioned on evidence.
The CTBN literature has paid no attention to issues of reachability (when much of the joint
state space is not reachable) and optimization of exact inference methods.

For processes with a natural synchronization clock (such as modeling daily high and low
temperatures), a discrete-time model is the best fit. For processes without such a natural
time-slice-width we recommend a continuous-time model. If the questions of interest are
about steady states of the system or an exact solution is necessary, an EV∗MDD is probably
the best choice. If the model must be built from data or approximate inference (especially
conditioned on data) is necessary, a CTBN is probably the best choice.

However, we have shown that the two models share much in common. Thus, we hope
that the efficient exact algorithms from EV∗MDDs can be applied to CTBNs and the approx-
imate inference and model estimation methods from CTBNs can be applied to EV∗MDDs.
If so, then the choice of model would depend more upon the model properties and not the
existing suite of algorithms. In particular, a CTBN makes the assumption that each vari-
able is distinct. In contrast, a disjunctive EV∗MDD encoding decomposes the system into
local events. The variable-level independencies are more easily read from a CTBN graph,
but they disallow simultaneous transition of multiple variables. The application domain
should guide whether variable-level explicit independences or simultaneous transitions are
more important.

Regardless of the model used, we believe time is a continuous quantity and best modeled
as such. While the introduction of the matrix exponential would at first seem to complicate
matters (compared with discrete time), we believe it makes the true coupling of variables
more obvious and opens up mathematical and algorithmic possibilities for more efficient
and precise solutions.

772

57
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Tutorial on Structured Continuous-Time Markov Processes

Acknowledgements

Shelton was supported by DARPA award FA8750-14-2-0010 and by The Laura P. and Leland
K. Whittier Virtual PICU at Children’s Hospital Los Angeles (awards UCR-12101024 and
8220-SGNZZ0777-00). Ciardo was supported by the NSF through grant CCF-1442586.

Appendix A. NP-hardness of CTBN Inference

The theorem and proof of the NP-hardness of CTBN inference are straight-forward exten-
sions of the similar proof for Bayesian networks (Koller & Friedman, 2009). The literature
has widely accepted it to be true, but no proof has been formally presented. Thus, while
straight-forward, we present it here for completeness.

Definition 1. CTBN-Inf is the following decision problem. Given a CTBN specified as
a directed graph G over nodes {X1, X2, . . . , XL}, a set of conditional intensity matrices
Q = {QXi|pari}, and an initial distribution π in which each node is independent with
marginals {πXi}; a variable Xj; a value for Xj, xj; and a time t > 0, decide whether
PG,Q,π(Xj(t) = xj) > 0.

Theorem 1. CTBN-Inf is NP-hard.

Proof. The proof is a polynomial time reduction from 3-SAT, following the same lines as
the similar proof for Bayesian networks.

Given a 3-SAT problem with variables z1, z2, . . . , zm and clauses c1, c2, . . . , ck in which
zA(i,j) is the jth variable (j ∈ {1, 2, 3}) in clause i (i ∈ {1, 2, . . . , k}) with sign sA(i,j) ∈
{+,−}, we construct a CTBN with m + 2k − 1 binary variables (taking values F or T ):
Y1, Y2, . . . , Ym, C1, C2, . . . , Ck, B1, B2, . . . , Bk−2, and S.

Variable Yi has no parents, a uniform initial distribution πYi , and an intensity matrix
QYi|∅ that is all 0.

Variable Ci has three parents: YA(i,1), YA(i,2), and YA(i,3). If none of the truth value
of the parents (yA(i,1), yA(i,2), yA(i,3)) match the formula’s signs (sA(i,1), sA(i,2), sA(i,3)), the
conditional intensity matrix is all 0. For the other parent assignments (in which at least one

variable matches), the conditional intensity matrices are

[
−1 1
0 0

]
. The initial distribution

is
[
1 0

]
.

Variable B1 has parents C1 and C2. Variable Bi (for 1 < i < k − 1) has parents Bi−1

and Ci+1. Variable S has parents Bk−2 and Ck. For all of these variables, the conditional

intensity matrix if the two parents’ values are T is

[
−1 1
0 0

]
. Otherwise, the conditional

intensity matrix is all 0. All of these variables have an initial distribution of
[
1 0

]
.

This reduction is polynomial in size (all numeric values are small and there are a polyno-
mial number of variables, each with a maximum of 3 parents) and can obviously be output
in polynomial time. By construction, Yi selects at time 0 a truth value for zi and never
changes. Each Cj will then eventually change to T if and only if the clause is satisfied by
the selected truth values. Bj will eventually change to be T if and only if clauses 1 through
j + 1 are all T . S will similarly eventually change to be T if and only if all clauses are
satisfied.
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Because of the Markov nature of the process, for any time t > 0, PG,Q,π(S(t) = T ) > 0 if
the formula is satisfiable and the same probability is 0 if the formula is not satisfiable.

This demonstrates that determining whether a marginal is non-zero is NP-hard. By sim-
ilar construction as for Bayesian networks (Koller & Friedman, 2009), this can be extended
to show that absolute and relative error formulations of inference are also NP-hard.
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Abstract
We describe a deterministic anytime method for
calculating filtered and smoothed distributions
in large variable-based continuous time Markov
processes. Prior non-random algorithms do not
converge to the true distribution in the limit of
infinite computation time. Sampling algorithms
give different results each time run, which can
lead to instability when used inside expectation-
maximization or other algorithms. Our method
combines the anytime convergent properties of
sampling with the non-random nature of varia-
tional approaches. It is built upon a sum of time-
ordered products, an expansion of the matrix ex-
ponential. We demonstrate that our method per-
forms as well as or better than the current best
sampling approaches on benchmark problems.

1. Continuous-time stochastic systems
Continuous-time discrete-state stochastic models describe
systems in which event times are not synchronized with a
global clock. Examples include web searches (Gunawar-
dana et al., 2012), computer networks (Xu & Shelton,
2010), social networks (Fan & Shelton, 2009), robotics
(Ng et al., 2005), system verification (Baier et al., 2003),
and phylogenetic trees (Cohn et al., 2009), among others.
Discretizing time can be computationally expensive. The
“time-slice” width must be much smaller than the short-
est time between events. This can lead to inefficient com-
putations during times in which events or expected events
are less frequent. Much as the abstraction of real-valued
numbers (and their implementation in floating-point rather
than fixed-point representations) is helpful in the develop-
ment of numeric algorithms, continuous-time is useful for

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

stochastic dynamics systems.

This paper focuses on Markovian models. In a discrete-
time Markov process, given a row-stochastic matrix M
and a distribution v (as a row-vector), the computation
of vn = vMn propagates v forward n time steps. In a
continuous-time Markov process (CTMP), given a rate (in-
tensity) matrix Q, vt = veQt propagates v forward t time
units in the same fashion. This is the critical computation
step in filtering, smoothing, and parameter estimation. We
focus on how to compute this matrix exponential when the
size of v is very large and both v and Q have structure (al-
lowing their efficient representation).

Except for the most trivial of cases, vt has no internal struc-
ture. In particular, assume that the state space is factored,
that is composed of joint assignments to state variables.
Even if v is completely independent, vt no longer has any
structure (unless Q also represents a completely indepen-
dent system). This is the same problem that arises in dy-
namic Bayesian networks (DBNs) in which forward propa-
gation causes all variables in the system to be coupled. We
assume that a full distribution over the state space is too
large to be stored, and therefore seek an approximation.

1.1. Previous work

This problem has received attention in the verification lit-
erature for decision-diagram-based representations of the
intensity matrix Q. However, the assumption behind this
literature is that while Q may have structure to keep it rep-
resentable, an exact answer is desired and therefore vt is
represented as a full vector. The shuffle algorithm is one
such example (Fernandes et al., 1998).

By contrast, we assume that representing vt explicitly is
not possible. We would like to calculate expectations with
respect to the distribution vt. In our approach, we con-
centrate on continuous-time Bayesian networks (Nodelman
et al., 2002) (CTBNs), but the method is general to any Q
that is the sum of Kronecker products. Even the simplest
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expectations (like marginals) are NP-hard to compute (the
proof is a straightforward extension of the proof for general
Bayesian networks), so we focus on approximations. In the
literature on CTBNs, there are a number of such methods
that fall roughly into two groups. The first are variational
approaches such as expectation propagation (El-Hay et al.,
2010) and mean field (Cohn et al., 2009). These methods
are deterministic. However, they do not converge to the
true value as computation time increases and generally can
only compute marginals or similar expectations. The sec-
ond group are sampling approaches including importance
sampling (Fan et al., 2010) and Gibbs sampling (Rao &
Teh, 2011). These approaches converge to the true value
and can estimate any expectation of vt. However, they are
random and this can cause problems when used inside other
algorithms (like expectation-maximization).

1.2. Our approach

Our proposed method is deterministic and converges in the
limit of infinite computational time. It can be viewed as a
bridge between sampling and deterministic methods. We
decompose the system into two pieces: a system (A) of
completely independent components, and a correction (B).
We reason exactly about the system A and add increasing
number of correction terms derived from B. We generate a
computation tree and traverse it using a priority queue, to
select the larger correction terms earlier.

We first present our approach assuming that Q and proba-
bility vectors can be stored exactly. Then, we demonstrate
how the calculations can be carried out efficiently when Q
is structured. In section 2.4, we present a simple example
to ground the derivation. Finally we demonstrate results
comparing the computational efficiency of our method to
other anytime convergent methods.

2. Matrix exponential calculation
Consider a CTMP with discrete states which is described
by an initial state distribution row-vector v of size n and a
rate matrix Q of size n-by-n. The rate matrix represents
the rates by which the system transitions between states.
The rate of transitioning from state i to j is qij ≥ 0 and the
rate of transitioning out of state i is qi =

∑
j 6=i qij . The

diagonal elements of the rate matrix are the negative row
sums: qii = −qi.
As stated above, the distribution at time t, for t ≥ 0, is
calculated by vt = veQt where eQt is the matrix expo-
nential with Taylor expansion eQt =

∑∞
k=0

1
k! (Qt)

k. The
matrix exponential calculation is very widely used in ap-
plied mathematics and there are many numerical methods
to solve it (Moler & Loan, 2003).

If the state-space is structured as joint assignments to m

variables, its size, n, grows exponentially with the number
of variables, m. This makes the eQt calculation intractable
for large systems. Using the structure of Q for this calcula-
tion is not straightforward because it is not preserved by the
matrix exponential. Additionally, the commutative prop-
erty does not hold for matrix exponential in general: For
any same-sized matrices A and B, e(A+B)t 6= eAteBt 6=
eBteAt, unless the commutator [A,B] = AB − BA van-
ishes. One possible decomposition comes from the Kro-
necker sum property: e(A⊕B) = eA ⊗ eB . Yet, Kronecker
sums alone can only describe rate matrices for systems in
which all variables are independent.

For the general case, e(A+B)t can be seen as a perturbation
of eAt in the direction of Bt (Najfeld & Havel, 1995) and
can be represented as

e(A+B)t = eAt +

∫ t

0

eAsBeA(t−s) ds (1)

+

∫ t

0

(∫ s

0

eArBeA(s−r) dr

)
BeA(t−s) ds+ . . .

which is a sum of recursive functions. This series, was
first explored in quantum field theory (Dyson, 1949) and
is called a series of time-ordered products (TOP), or some-
times a path-ordered exponential. In stochastic processes,
Mjolsness & Yosiphon (2006) called it a time-ordered
product expansion and used it to guide a sampling algo-
rithm. We will employ the expansion to derive our deter-
ministic method, Tree of Time-Ordered Products (TTOP).

2.1. TOP computation tree

We make two assumptions: Q can be split intoQ = A+B,
where veAt is relatively simple to compute, and B is bro-
ken into J manageable termsB =

∑J
j=1Bj . We will show

how to realize these assumptions in the following sections.
We use the TOP expansion of Equation 1 and apply the dis-
tributive property of matrix multiplication to move the sum
outside the integral:

ve(A+
∑J

j=1 Bj)t = veAt +
J∑

j=1

∫ t

0

veAsBje
A(t−s) ds (2)

+
J∑

j=1

J∑

j′=1

∫ t

0

(∫ s

0

veArBje
A(s−r) dr

)
Bj′e

A(t−s) ds+ . . .

Let F l(t) represent the lth term of the expansion. Then the
equation can be rewritten as

veQt =
∞∑

l=0

F l(t) (3)
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where

F 0(t) = veAt

F l(t) =
J∑

j=1

∫ t

0

F (l−1)(s)Bje
−As ds eAt. (4)

By construction, the first term, veAt, is simple to solve (as
will be explained in Section 2.2).

2.1.1. INTEGRAL EXPANSION

We calculate each integral with the following expansion
in which we treat a polynomial portion exactly and use
adaptive quadrature to estimate the non-polynomial por-
tion. Let g(t) be a general function of time, g0 be a con-
stant, and q(t) be a piece-wise polynomial. Further denote
q̄(t) =

∫ t
0
q(s) ds and q[r1,r2](t) = I[r1 ≤ t < r2]q(t)

(both also piece-wise polynomials), where I[·] is the indi-
cator function. Then we can write an integral of the form
h(t; q, g, g0) =

∫ t
0
q(s)(g(s)− g0)ds as

h(t; q, g, g0) = q̄(t)(g(s0)− g0)

+

∫ t

0

q[a,s0](s) (g(s)− g(s0)) ds

+

∫ t

0

q[s0,b](s) (g(s)− g(s0)) ds

= q̄(t)(g(s0)− g0)

+h(t;q[a,s0], g, g(s0)) + h(t; q[s0,b], g, g(s0)) (5)

for any chosen g0, approximating g as the constant g(s0)
and adding 2 correction terms (of the same form) for sub-
parts of the interval. Here, [a, b] is the support range of q,
and s0 = a+b

2 . For convenience, we divide this range into
two: [a, a+b

2 ] and [a+b
2 , b]. We use two subdivision in the

following sections as well, but generalization to more than
two sub-intervals is straightforward.

Recursive expansion Equation 5 will generate infinitely
many terms in the form of q̄(t)(g(s0)− g0):

h(t; q, g, g0) =
∞∑

k=1

qk(t)uk (6)

where qk(t) is q̄(t) for a particular q, and uk is (g(s0)−g0)
for a particular g and g0.

2.1.2. COMPLETE COMPUTATION TREE

Assume level l of Equation 3 can be expressed as

F l(t) =
∞∑

k=1

qlk(t)ulke
At (7)

q(t)weAt

N(q, u, u0, j)

w = ueAs0Bje
−As0

N(q̄, w − u0, 0, j
′)

N(q[a,s0], u, w, j)

N(q[s0,B], u, w, j)

level l level l + 1

s0 = (a+ b)/2
[a, b] = q’s support

∀j′:

contribution
node’s name

calculations

Figure 1. General form of the expansion.

(as is certainly true for l = 0: q0
1(t) = 1, u0

1 = v). We then
show how to construct level l + 1 similarly:

F l+1(t) =
J∑

j=1

∫ t

0

F l(s)Bje
−As ds eAt

=
J∑

j=1

∫ t

0

∞∑

k′=1

qlk′(s)u
l
k′e

AsBje
−As ds eAt

=
∞∑

k′=1

J∑

j=1

∫ t

0

qlk′(s)u
l
k′e

AsBje
−As ds eAt

=
∞∑

k′=1

J∑

j=1

h(t; qlk′ , u
l
k′e

AtBje
−At, 0) eAt

=
∞∑

k′=1

J∑

j=1

∞∑

k=1

qlk′,k,j(t)u
l
k′,k,je

At. (8)

In last two lines, we have replaced the integral with
the expansion of Equation 6. In particular, the inte-
gration of interest is h(t; qlk′ , u

l
k′e

AtBje
−At, 0). We let

the set {qk, uk}k generated for this h be denoted as{
qlk′,k,j , u

l
k′,k,j

}
k
.

In Equation 8, k′ represents a node at level l in the compu-
tation tree. So, for every k′, we generate J nodes in level
l + 1, each of which are the roots of trees for expansion
of corresponding integrals. The result is an expansion for
F l+1 of the same form as Equation 7.

We denote a term in this expansion as a compute node
N(q, u, u0, j). It and its descendants in the same level
l represent h(t; q, ueAtBje

−At, u0). Its children in level
l + 1 represent new terms in F l+1. Node N(q, u, u0, j)
contributes the term

q(t)weAt, where w = ueAs0Bje
−As0 , (9)

to the total sum. Its two children on the same level are
N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) where s0 = a+b

2 .
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Algorithm 1 TTOP Filter
Initialize priority queue PQ with N(1, v, 0, 0)
while PQ not empty and compute time left do

Let N(q, u, u0, j)← Pop(PQ)
Set (a, b) be the support range of q
Set s0 = a+b

2 , and w = ueAs0Bje
−As0

Add q(t)weAt to the running sum (see Equation 9)
{Next line can be generalized to more than 2 splits}
Add N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) to PQ
for j′ = 1 to J do

for i = 1 to m do
Add N(q̄, di(w, u0), 0, j′) to PQ

On the next level, it generates a node N(q̄, w − u0, 0, j
′),

for all 1 ≤ j′ ≤ J . Figure 1 shows this expansion.

For reasons that will be clear in the next section, we can-
not form w − u0 (even though we can form each individu-
ally). Thus, node N(q̄, w− u0, 0, j

′) could be described by
two nodes: N(q̄, w, 0, j′) and N(q̄,−u0, 0, j

′). However,
the second node will essentially “undo” calculations done
elsewhere. We address this in the next section.

These recursively generated nodes represent an infinite tree
whose sum is veQt. Nodes have a single value, plus “same-
level” children who represent finer approximations of the
integral, and “next-level” children who represent one com-
ponent of F l for the next level l. The sum of all nodes
at level l describes a system that evolves according to A
(instead of Q), but for which at l time points (positioned
anywhere), the correction B = Q−A is applied. If A = 0,
then each level is one term in the Taylor expansion of Q.
The traditional 1

i! coefficients in such an expansion are cap-
tured by our piece-wise polynomial integrations.

If we explore the tree such that every node will be visited
in the limit of infinite computational time, then we can add
each node’s evaluation at time t to a running sum and com-
pute veQt. Algorithm 1 outlines this method using a pri-
ority queue to concentrate computation on portions of the
tree with large contributions.

2.2. Structured TOP calculations

For the scenarios of interest, the vector v and matrix Q are
too large to explicitly represent because the state space con-
sists of one state for every assignment to a set of m vari-
ables, X1 through Xm. We will assume that v is an inde-
pendent distribution (although we can extend this work to
dependencies in v, but this eases the exposition). In Kro-
necker algebra this means v =

⊗m
i=1 vi, where each vi is a

small row-vector of the marginal distribution over Xi.

We now show how to keep each quantity in the computa-
tion tree representable exactly as a similarly factored dis-

tribution: a Kronecker product with one term for each vari-
able. If A =

⊕m
i=1Ai, then eAt =

⊗m
i=1 e

Ait. We assume
that each Ai (which is only over the state space of Xi) is
small enough so that calculation of eAit can be performed
efficiently. If we also require that each Bj =

⊗m
i=1Bj,i,

then all vectors and matrices to be multiplied in the com-
putation tree are such Kronecker products. In particular, at
node N(q, u, u0, j), we need to compute w (Equation 9) for
its contribution to the sum. Because u, Bj , and eAs0 are all
Kronecker products and (A⊗B)(C⊗D) = (AC)⊗(BD),
all of the matrix products can be performed efficiently by
just operating on the subspaces over each variable indepen-
dently. Thus w (and by extension the node’s contribution
to the sum) is a completely factored vector represented as a
Kronecker product (that is, a distribution in which all vari-
ables are independent).

The generation of new nodes does not require any other
operations, except for manipulation of one-dimensional
piece-wise polynomials. Thus, our answer is a weighted
sum of independent distributions (Kronecker products). It
is not representable as a Kronecker product because it is a
full distribution. However, any expectation of this distribu-
tion can be computed by summing up the contribution of
each of these independent terms.

As we mentioned earlier, N(q̄, w−u0, 0, j
′) has the expres-

sion w− u0 which is not a Kronecker product (despite that
both w and u0 are). To handle this, we note that

m⊗

i=1

xi −
m⊗

i=1

yi =
m∑

i′=1

di′(x, y) (10)

where

di′(x, y) =

(⊗

i<i′

yi

)
⊗ (xi′ − yi′)⊗

(⊗

i>i′

xi

)
(11)

Because of how we select Bj (see below), xi′ − yi′ is only
non-zero for a few i′ (the family of variable j). Further-
more, this allows us to split up the nodes by how much the
deviation (w − u0) contributes by variable, which concen-
trates computation on those variables whose approxima-
tions are most difficult. Thus, we use this decomposition
and divide the node N(q̄, w − u0, 0, j

′) (see Figure 1) into
nodes N(q̄, di′(w, u0), 0, j′) for all i′ for which wi′ 6= u0i′ .

The necessary form for Q =
⊕m

i=1Ai +
∑J
j=1

⊗m
i=1Bj,i

is always possible, although it might result in one Bj for
each element of Q (which would in general be exponen-
tial in the number of state variables). Binary decision
diagrams are often used to encode Q. In stochastic logic
applications a disjunctive partitioning leads very naturally
to this structure (Burch et al., 1991; Ciardo & Yu, 2005).
However, they are encoded in a form where A = 0. Tech-
niques similar to those we describe next can be applied to
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Q1 =

[
−1 1

3 −3

]

Q2|0 =

[
−2 2

4 −4

]

Q2|1 =

[
−4 4

3 −3

]

X1

X2

A1 =

[
−1 1

3 −3

]

A2 =

[
−2 2

3 −3

]
B1 =

[
1 0
0 0

]

︸ ︷︷ ︸
∆1,1

⊗
[

0 0
1 −1

]

︸ ︷︷ ︸
Q2|1−A2=B(2|1),2

=




0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0




B2 =

[
0 0
0 1

]

︸ ︷︷ ︸
∆2,2

⊗
[
−2 2

0 0

]

︸ ︷︷ ︸
Q2|2−A2=B(2|2),2

=




0 0 0 0
0 0 0 0
0 0 −2 2
0 0 0 0




Q =




−3 2 1 0
4 −5 0 1
3 0 −7 4
0 3 3 −6


 A = A1 ⊕A2 =




−3 2 1 0
3 −4 0 1
3 0 −5 2
0 3 3 −6


 B = B1 +B2

Figure 2. Two-node CTBN and decomposition. The large matrices (4-by-4) are implicit. Q is broken into an independent A and two
correction matrices, B1 and B2.

pull intensity from the Bj matrices into A, but we will fo-
cus on a different representation.

2.3. Continuous time Bayesian networks

A continuous time Bayesian network (CTBN) (Nodelman
et al., 2002) is a graphical model which provides a struc-
tured representation of a CTMP. The initial distribution is
described by a Bayesian network which we assume has no
edges (but this work can be extended to dependencies in
the initial distribution). The transition model is specified as
a directed and possibly cyclic graph, in which the nodes in
the model represent variables of the Markov process, and
the dynamics of each node depend on the state of its par-
ents in the graph. Each node Xi, for i = 1, . . . ,m, has a
set of parents Ui. The rate matrix Q is factored into condi-
tional rate matrices, Qi|ui

for every assignment of ui to Ui.
Each conditional intensity matrix gives the rates at which
variable Xi transitions at instants when Ui = ui. No two
variables can transition at exactly the same instant so any
element in the globalQ matrix describing a change of mul-
tiple variables is 0.

The global Q matrix for a CTBN can be represented with
Kronecker algebra. Let Ri|ui

=
⊗

i′ R(i|ui),i′ be a Kro-
necker product of one matrix for each variable where

R(i|ui),i′ =





Qi|ui
if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui
I otherwise .

(12)
where ∆k,k is a matrix of all zeros except a single one at
location k, k. In this way,Ri|ui

distributes the rates inQi|ui

to the proper locations in Q. The full Q for the CTBN is

therefore

Q =
M∑

i=1

∑

ui

(
M⊗

i′=1

R(i|ui),i′

)
. (13)

This corresponds to our TOP representation of Q where A
is 0 and there is one Bj for each variable and instantiation
of its parents. We can pull intensity into the A matrix by
defining

B(i|ui),i′ =





Qi|ui
−Ai if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui
I otherwise .

(14)
Then

Q =
⊕

i

Ai +
M∑

i=1

∑

ui

(
M⊗

i′=1

B(i|ui),i′

)
. (15)

The algebra is long, but straight-forward. It holds because
Ai is constant with respect to ui and the sum over ui rep-
resents each possible instantiation exactly once. The result
is that Ai represents an independent, approximate process
for Xi. A is the joint process of each of these independent
approximations. The differences between the independent
process and the CTBN are given by oneBi|ui

for each vari-
able and its parents’ instantiation. Note that ∆(i|ui),i′ = I
if i′ is not a parent of i. Thus, most of the components
of any Bj are the identity and computing ueAsBe−As for
these components is trivial (they are the same as u). Thus,
the calculations for N(q, u, u0, j) are local to the variable j
and its parents.
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4×
wa,1e

A14

⊗
wa,2e

A24

a : N(t, v1 ⊗ v2, 0⊗ 0, 1)

wa,1 = v1e
A12∆1,1e

−A12

wa,2 = v2e
A22B(2|1),2e

−A22

id: node parameters

valueinternal calculations

v1e
A14

⊗
v2e

A24

root for veQ4

4×
wb,1e

A14

⊗
wb,2e

A24

b : N(t, v1 ⊗ v2, 0⊗ 0, 2)

wb,1 = v1e
A12∆2,2e

−A12

wb,2 = v2e
A22B(2|2),2e

−A22

8×
wd,1e

A14

⊗
wd,2e

A24

d : N(t2/2, wa,1 ⊗ wa,2, 0⊗ 0, 1)

wd,1 = wa,1e
A12∆1,1e

−A12

wd,2 = wa,2e
A22B(2|1),2e

−A22

8×
we,1e

A14

⊗
we,2e

A24

e : N(t2/2, wa,1 ⊗ wa,2, 0⊗ 0, 2)

we,1 = wa,1e
A12∆2,2e

−A12

we,2 = wa,2e
A22B(2|2),2e

−A22

2×
wc,1e

A14

⊗
wc,2e

A24
− 2×

wb,1e
A14

⊗
wb,2e

A24

c : N(I[t < 2]× t, v1 ⊗ v2, wb,1 ⊗ wb,2, 2)

wc,1 = v1e
A11∆2,2e

−A11

wc,2 = v2e
A21B(2|2),2e

−A21

Figure 3. Portion of computation tree for example in Figure 2 for t = 4. Each box is one node in the computation tree (see Figure 1).
Nodes a and b are the children of the root. Nodes d and e are examples of their children at the next level (l = 2). Node c is an example
of a refinement (of node b). Equation 11 dictates how the children of c for l = 2 are computed because u0 6= 0 for this node.

2.4. CTBN example

Figure 2 shows a simple 2-variable CTBN and one possible
decomposition into A and B. Here the local Ai matrices
are chosen to be the minimal rates. Because X1 has no
parents,A1 is exact and there are noB terms. X2 generates
2 B terms. If we let v = v1 ⊗ v2 (that is, v1 and v2 are the
independent marginals ofX1 andX2), then Figure 3 shows
a small portion of the computation tree.

This method essentially computes the effect of A exactly
and incorporates the effects of B as a Taylor expansion,
adding increasing numbers of terms. Note that in Figure 2,
A1 and A2 are proper intensity matrices (their rows sum
to 0). This means that B2|0 and B2|1 have negative diag-
onal elements. This results in a computation that corre-
sponds to a Taylor expansion with alternating signs. This
can cause computational problems. One alternative is to
arrange for B to have no negative elements. For instance

A2 =

[
−4 2

3 −4

]
, resulting in B2|0 =

[
2 0
1 0

]
and

B2|1 =

[
0 2
0 1

]
. The disadvantage is that v2e

A2t sums

to less than 1. The non-root nodes add probability to the
answer (instead of moving it within the answer).

Finally, for a CTBN, multiplication by a Bj is particularly
simple. The j value indexes a variable (Xi) and an instan-
tiation to its parents (ui). To multiply a factored vector by
Bj , multiply the Xi component by Qi|ui

− Ai. For each
component associated with a parent, zero out all elements
of the vector except for the one consistent with ui. Vectors
for non-parent nodes are unchanged.

2.5. Smoothing and computational considerations

The discussion so far has focused on filtering. We would
also like to perform smoothing. We will limit ourselves
to the case in which the initial distribution at time 0, v, is
known and there is evidence at a later time T for which
the vector vT represents the probability of the evidence for
each possible state of the system. We assume that both
vectors factor as previously discussed.

The goal is to compute (an expectation of) the distribu-
tion at time t conditioned on the evidence at time T . This
consists of computing the Hadamard (point-wise) product
of veQt and vT e

Q>(T−t) (and then normalizing the re-
sult). First, consider computing each exponential sepa-
rately. Let the result of the “forward” direction be

∑
j αj

where the forward calculation’s jth node had contribution
αj =

⊗m
i=1 αj,i. Let the “backward” direction be similarly
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(c) m = 21

Figure 4. Computation time versus KL divergence for the toroid networks when τ = 2, β = 0.5.
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Figure 5. Computation time versus KL divergence for the toroid networks when τ = 2, β = 1.

represented as
∑
k βk with βk =

⊗m
i=1 βk,i. It can easily

be shown that

Na∑

j=1

αj �
Nb∑

k=1

βk =

Na∑

j=1

Nb∑

k=1

(
m⊗

i=1

αj,i

)
�
(

m⊗

i=1

βk,i

)

=

Na∑

j=1

Nb∑

k=1

m⊗

i=1

(αj,i � βk,i) (16)

Thus, we must consider every pair of nodes, one from the
forward expansion and one from the backward expansion.
For each pair, the components of the factored representa-
tion are point-wise multiplied together to obtain the pair’s
contribution to the answer.

We want to include these terms judiciously to best use a
finite computational budget. We do this by keeping a fron-
tier set of pairs of computation nodes, one from the forward
tree and one from the backward tree. If we have explored
(added to the smoothing result) αj�βk, we add to our fron-
tier set αj paired with all of βk’s children and αj’s children
paired with βk. We use a closed list to ensure no pair is
considered twice.

The question then is how to prioritize members of the fron-
tier. We need to have an estimate of the total contribution of

this pair and all subsequent pairs in the graph. We select the
sum of this node’s contribution to the query value (absolu-
tion value of the change) and the product of the maximum
value in each node.

3. Experiments
We implemented our method, TTOP (Tree of Time-
Ordered Products), as part of the CTBN-RLE code base
(Shelton et al., 2010), and it will be included in the next
version. We evaluated our method on a synthetic network
of Ising model dynamics. The Ising model is a well-known
interaction model with applications in many fields includ-
ing statistical mechanics, genetics, and neuroscience (Zhou
& Schmidler, 2009). The experimental results focus on in-
ference accuracy given a known network. The Ising model
was chosen so that we could compute the true answer in a
reasonable time and scale the problem size.

Using this model, we generated a directed toroid net-
work structure with cycles following (El-Hay et al., 2010).
Nodes follow their parents’ states according to a coupling
strength parameter (β). A rate parameter (τ ) determines
how fast nodes toggle between states. We scale the num-
ber of nodes in the network but limit it to 21 to be able to
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compare the results to exact inference. We use three net-
works of respectively m = 9, 15, and 21 binary variables.
We could not include networks with more than 21 binary
variables because we cannot do exact exponentiation on a
matrix of size bigger than 221 × 221 in a reasonable time.
We scale the network by adding rows of nodes. For these
networks we fix the τ parameter and vary β. Nodes can
take on values −1 and +1.

We compare TTOP to two efficient anytime algorithms:
auxiliary Gibbs sampling (AuxGibbs) (Rao & Teh, 2011)
and importance sampling (IS) (Fan et al., 2010). We also
compared to a mean field variational approach (MF) (Cohn
et al., 2009); however, error for MF is above the error range
of other methods for all computation times. For this reason,
we omit the MF results in the plots. We analyze the error
in marginals computed by each method relative to exact in-
ference. We focus on the computation time because in our
experiments memory was not an issue and whole computa-
tion tree occupied only a few GBs.

For TTOP, we set the number of splits for the quadrature
(see Equation 5) to 10 because it produces a good compu-
tation time versus error performance. We vary the compu-
tation time budget to observe the trade-off between compu-
tation time and the error.

For AuxGibbs, we vary the sample size between 50 and
5000, and set the burn-in period to be 10% of this value.
For IS, the sample size varies between 500 to 50000. We
ran the experiments 100 times for each test for both sam-
pling methods. The computation time shown in the plots
is the average of these runs for a given number of sam-
ples. The error is the sum of the KL-divergences of all the
marginals from their true values.

Our experiments focus on smoothing. The networks start
from a deterministic state, for m = 9: at t = 0 variables
1–5 are +1 and 6–9 are −1. At t = 1, variables 1–3 have
switched to −1, 4–5 remain +1, and 6–9 have switched to
+1. For m = 15 and 21 we use a similar pattern of evi-
dence for comparison reasons. For m = 15, the variables
1–5, 7–8, 10–11 start at +1 and the remaining variables
start at −1. The variables 1–3 switch to −1, while 4–5,7–
8, and 10–11 stay at +1, and 6, 9 and 12–15 switch to +1.
The evidence for m = 21 also follows the same pattern
scaled to 21 nodes.

The nodes are not observed between t = 0 and t = 1.
We query the marginal distributions of nodes at t = 0.5.
Figures 4 and 5 show computation time versus sum of KL-
divergence of marginals. We focus on the first 20 seconds
of computation time because usually a few seconds are
enough for our inference tasks. The lines in the plots con-
tinue their trend and cross at some point except for Figure
4-b. A KL-divergence sum of 10−2 is generally accurate

for these networks.

Figure 4 shows the results for τ = 2, β = 0.5. For most
of these experiments, TTOP performs better than sampling
methods. When the coupling strength of the network is
increased to β = 1 as shown in Figure 5, TTOP has more
variations in the error as the computation time increases but
still has better performance overall. The occasional peaks
in the error happen because sometimes a part of the com-
putation tree is expanded and added to the sum, without the
part that balances it since the time budget expired. This can
be seen as more computation time is given to the algorithm,
the errors decrease with the addition of the balancing part.

As the number of nodes in the network increase, our
method keeps the computation time versus error advantage.
Additionally, the gap between our method and others in-
creases with the network size. Especially when β = 1,
it performs better for the larger networks. While we can-
not perform exact inference for larger networks, we expect
these trends would continue as the problem size scales.

TTOP is also much better for short computation times, be-
cause it solves e(At) directly by integration while the sam-
pling methods can generate only a few samples. Although
the derivatives are smaller for the TTOP lines, this could
potentially be fixed with better node prioritization. The best
node prioritization would be one that looked at the contri-
bution of the whole subtree rooted at a node rather than
only the contribution of that node. Our heuristic is good
for the first few levels of the tree, but it does not do as well
as we go deeper in the tree.

The fluctuations in the error of TTOP are expected. The
error from a single run of sampling would fluctuate as
well. The plotted results of our method are from a single
run compared to the averaged results of sampling methods
which are 100 runs.

4. Conclusion
We have demonstrated an anytime algorithm for structured
CTMP filtering and smoothing. Unlike prior work, it is de-
terministic, which can be of benefit when used inside learn-
ing methods. In the experiments, it has better computation
time versus error performance than prior anytime conver-
gent methods, especially for loosely coupled systems. Also
as network size increases and coupling strength stays the
same, our method’s advantage increases as well.
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Abstract
The cover tree data structure speeds up exact
nearest neighbor queries over arbitrary metric
spaces (Beygelzimer et al., 2006). This paper
makes cover trees even faster. In particular, we
provide

1. A simpler definition of the cover tree that
reduces the number of nodes from O(n) to
exactly n,

2. An additional invariant that makes queries
faster in practice,

3. Algorithms for constructing and querying
the tree in parallel on multiprocessor sys-
tems, and

4. A more cache efficient memory layout.

On standard benchmark datasets, we reduce the
number of distance computations by 10–50%.
On a large-scale bioinformatics dataset, we re-
duce the number of distance computations by
71%. On a large-scale image dataset, our parallel
algorithm with 16 cores reduces tree construction
time from 3.5 hours to 12 minutes.

1. Introduction
Data structures for fast nearest neighbor queries are most
often used to speed up the k-nearest neighbor classifica-
tion algorithm. But many other learning tasks also re-
quire neighbor searches, and cover trees can speed up these
tasks as well: localized support vector machines (Segata
& Blanzieri, 2010), dimensionality reduction (Lisitsyn
et al., 2013), and reinforcement learning (Tziortziotis et al.,
2014). Making cover trees faster—the main contribution of
this paper—also makes these other tasks faster.

Given a space of points X , a dataset X ⊆X , a data point
p ∈X , and a distance function d : X ×X →R, the near-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

est neighbor of p in X is defined as

pnn = argmin
q∈X−{p}

d(p,q)

The naive method for computing pnn involves a linear scan
of all the data points and takes time θ(n), but many data
structures have been created to speed up this process. The
kd-tree (Friedman et al., 1977) is probably the most fa-
mous. It is simple and effective in practice, but it can only
be used on Euclidean spaces. We must turn to other data
structures when given an arbitrary metric space. The sim-
plest and oldest of these structures is the ball tree (Omo-
hundro, 1989). Although attractive for its simplicity, it pro-
vides only the trivial runtime guarantee that queries will
take time O(n). Subsequent research focused on provid-
ing stronger guarantees, producing more complicated data
structures like the metric skip list (Karger & Ruhl, 2002)
and the navigating net (Krauthgamer & Lee, 2004). Be-
cause these data structures were complex and had large
constant factors, they were mostly of theoretical interest.
The cover tree (Beygelzimer et al., 2006) simplified nav-
igating nets while maintaining good run time guarantees.
Further research has strengthened the theoretical runtime
bounds provided by the cover tree (Ram et al., 2010). Our
contributions make the cover tree faster in practice.

The cover tree as originally introduced is simpler than re-
lated data structures, but it is not simple. The original ex-
planation required an implicit tree with an infinite number
of nodes; but a smaller, explicit tree with O(n) nodes ac-
tually gets implemented. We refer to this presentation as
the original cover tree. In the remainder of this paper we
introduce the simplified cover tree and the nearest ancestor
cover tree; parallel construction and querying algorithms;
and a cache-efficient layout suitable for all three cover
trees. We conclude with experiments showing: on stan-
dard benchmark datasets we outperform both the original
implementation (Beygelzimer et al., 2006) and MLPack’s
implementation (Curtin et al., 2013a); on a large bioinfor-
matics dataset, our nearest ancestor tree uses 71% fewer
distance comparisons than the original cover tree; and on a
large image data set, our parallelization algorithm reduces
tree construction time from 3.5 hours to 12 minutes.
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2. Simplified cover trees
Definition 1. Our simplified cover tree is any tree where:
(a) each node p in the tree contains a single data point
(also denoted by p); and (b) the following three invariants
are maintained.

1. The leveling invariant. Every node p has an associ-
ated integer level(p). For each child q of p

level(q) = level(p)−1 .

2. The covering invariant. For every node p, define the
function covdist(p) = 2level(p). For each child q
of p

d(p,q)≤ covdist(p) .

3. The separating invariant. For every node p, define the
function sepdist(p) = 2level(p)−1. For all distinct
children q1 and q2 of p

d(q1,q2)> sepdist(p)

Throughout this paper, we will use the functions
children(p) and descendants(p) to refer to the set
of nodes that are children or descendants of p respectively.
We also define the function maxdist as

maxdist(p) = argmax
q∈descendants(p)

d(p,q)

In words, this is the greatest distance from p to any of its
descendants. This value is upper bounded by 2level(p)+1,
and its exact value can be cached within the data structure.1

In order to query a cover tree (any variant), we use the
generic “space tree” framework developed by Curtin et
al. (2013). This framework provides fast algorithms for
finding the k-nearest neighbors, points within a specified
distance, kernel density estimates, and minimum spanning
trees. Each of these algorithms has two variants: a single
tree algorithm for querying one point at a time, and a dual
tree algorithm for querying many points at once. Our faster
cover tree algorithms speed up all of these queries; but for
simplicity, in this paper we focus only on the single tree
nearest neighbor query. The pseudocode is shown in Algo-
rithm 1.

Analysis of the cover tree’s runtime properties is done us-
ing the data-dependent doubling constant c: the minimum
value c such that every ball in the dataset can be covered by
c balls of half the radius. We state without proof two facts:

1As in the original cover tree, practical performance is
improved on most datasets by redefining covdist(p) =
1.3level(p) and sepdist(p) = 1.3level(p)−1. All of our exper-
iments use this modified definition.

Algorithm 1 Find nearest neighbor
function findNearestNeighbor(cover tree p, query
point x, nearest neighbor so far y)

1: if d(p,x)< d(y,x) then
2: y← p
3: for each child q of p sorted by distance to x do
4: if d(y,x)> d(y,q)−maxdist(q) then
5: y← findNearestNeighbor(q,x,y)
6: return y

Algorithm 2 Simplified cover tree insertion
function insert(cover tree p, data point x)

1: if d(p,x)> covdist(p) then
2: while d(p,x)> 2covdist(p) do
3: Remove any leaf q from p
4: p′← tree with root q and p as only child
5: p← p′

6: return tree with x as root and p as only child
7: return insert (p,x)

function insert (cover tree p, data point x)
prerequisites: d(p,x)≤ covdist(p)

1: for q ∈ children(p) do
2: if d(q,x)≤ covdist(q) then
3: q′← insert (q,x)
4: p′← p with child q replaced with q′

5: return p′

6: return p with x added as a child

(a) any node in the cover tree can have at most O(c4) chil-
dren; (b) the depth of any node in the cover tree is at most
O(c2 logn). These were proven for the original cover tree
(Beygelzimer et al., 2006) and the proofs for our simplified
cover tree are essentially the same. We can use these two
facts to show that the runtime of Algorithm 1 is O(c6 logn)
for both the original and simplified cover tree.

Algorithm 2 shows how to insert into the simplified cover
tree. It is divided into two cases. In the first case, we can-
not insert our data point x into the tree without violating
the covering invariant. So we raise the level of the tree p
by taking any leaf node and using that as the new root. Be-
cause maxdist(p) ≤ 2covdist(p), we are guaranteed
that d(p,x) ≤ covdist(x), and so we do not violate the
covering constraint. In the second case, the insert func-
tion recursively descends the tree. On each function call,
we search through children(p) to find a node we can in-
sert into without violating the covering invariant. If we find
such a node, we recurse; otherwise, we know we can add
x to children(p) without violating the separating invari-
ant. In all cases, exactly one node is added per data point,
so the resulting tree will have exactly n nodes. Since every
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Figure 1. Fraction of nodes required for the simplified cover tree.
Fewer nodes means less overhead from traversing the tree and
fewer distance comparisons. See Table 1 for information on the
datasets.

node can have at most O(c4) children and the depth of the
tree is bounded by O(c2 logn), the runtime is O(c6 logn).

The simplified cover tree has the same runtime bounds as
the original cover tree, but it has an improved constant fac-
tor, as it needs only n nodes. Fewer nodes reduces both the
overhead from traversing the data structure and the number
of required distance comparisons. The original cover tree’s
nesting invariant dictated these extra nodes. In our defini-
tions, the nesting invariant states that for every node p, if
p has any children, then p also has itself as a child (this
child need not satisfy the leveling invariant). The nesting
invariant comes from the presentation of the original cover
tree as an infinite data structure, but it does not play a key
role in the cover tree’s runtime analysis. Therefore, we can
discard it and maintain the runtime guarantees.

Figure 1 shows the reduction in nodes by using the simpli-
fied cover tree on benchmark datasets taken from the ML-
Pack test suite (Curtin et al., 2013a). Section 6 contains
more details on these datasets, and Figure 3 in the same
section shows how this reduced node count translates into
improved query performance.

3. Nearest ancestor cover trees
In this section, we exploit a similarity between simplified
cover trees and binary search trees (BSTs). Insertion into
both trees follows the same procedure: Perform a depth
first search to find the right location to insert the point. In
particular, there is no rebalancing after the insertion. Many
alternatives to plain BSTs produce better query times by
introducing new invariants. These invariants force the in-
sertion algorithm to rebalance the tree during the insertion
step. Our definition of the simplified cover tree makes
adding similar invariants easy. We now introduce one pos-
sible invariant.
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9 13
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7 9

12

11 13

level 3

level 2

level 1

Figure 2. Using the metric d(a,b) = |a− b|, both trees are valid
simplified cover trees; but only the right tree is a valid nearest
ancestor cover tree. Moving the 9 and 11 nodes reduces the value
of maxdist for their ancestor nodes. This causes pruning to
happen more often during nearest neighbor queries.

Definition 2. A nearest ancestor cover tree is a simplified
cover tree where every point p has the nearest ancestor in-
variant: If q1 is an ancestor of p and q2 is a sibling of q1,
then

d(p,q1)≤ d(p,q2)

In other words, the nearest ancestor cover tree ensures that
for every data point, each of its ancestors is the “best possi-
ble” ancestor for it at that level. Figure 2 shows a motivat-
ing one dimensional example.

Algorithm 3 shows how to insert a point into a nearest an-
cestor cover tree. It uses the same insert function as
2, but the helper function insert is slightly modified
in two ways (shown with an underline). First, we sort
children(p) according to their distance from the data
point x. This sorting ensures that our newly inserted point
will satisfy the nearest ancestor invariant. But this new
point x may cause other points to violate the nearest an-
cestor invariant. In particular, if x has a sibling q; q has
a descendent r; and d(r,x) < d(r,q); then r now violates
the nearest ancestor invariant. Our second step is to call
rebalance, which finds all these violating data points
and moves them underneath x.

Most of the work of the rebalance function happens in
the helper rebalance . rebalance returns a valid
nearest ancestor cover tree and a set of points that still need
to be inserted; rebalance just inserts those extra points.
rebalance takes two nearest ancestor cover trees p and
q (where p is an ancestor of q) and a point x. Its goal is to
“extract” all points from q that would violate the nearest an-
cestor invariant if x became a sibling of p. It returns three
values: a modified version of q, a set of points that can-
not remain in any point along the path from p to q called
the moveset, and a set of points that need to be reinserted
somewhere along the path from p to q called the stayset.
There are two cases. In the first case, the data point at node
q must move. We then filter the descendants of q into the
moveset or stayset as appropriate and return null for our
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modified q. In the second case, the data point at node q
must stay. We recursively apply rebalance to each of
q’s children; we use the results to update the correspond-
ing child, the moveset and the stayset variables. Finally, we
try to reinsert any nodes in stayset. If rebalance was
called with q a child of p, then the return value of stayset
will be empty; any children that could not be directly rein-
serted must be in the moveset.

The rebalance function loops over all O(c4) children
of a node, and the maximum depth of the recursion is
O(c2 logn). Therefore the overall runtime is O(c6 logn).
It may be called up to O(c4) times within rebalance, so
the body of the for loop on line 12 executes O(c10 logn)
times. Unfortunately, we have no bound on the size of
moveset, except to note that it is usually small in practice.
On the datasets in our experiments (see Table 1), the value
is usually zero or at worst in the single digits. Figure 3(a)
shows that nearest ancestor cover tree construction is not
that much slower in practice, and Figure 3(b) shows that
this slowdown is overshadowed by the resulting speedup in
nearest neighbor queries.

4. Parallel cover tree
In this section we discuss parallelism on shared-memory,
multiprocessor machines. Querying in parallel is easy.
Since the results of neighbor queries for a data point do
not depend on other data points, we can: divide the points
among the processors; then each processor traverses the
tree independently. More difficult is constructing the tree
in parallel. Our strategy is to split the data, create one
cover tree on each processor, then merge these trees to-
gether. Previous work on parallelizing cover trees applied
only to the GPU (Kumar & Ramareddy, 2010). Our ap-
proach is suitable for any shared-memory multiprocessor
machine. We give a detailed description for merging sim-
plified cover trees and discuss at a high level how to extend
this procedure to nearest ancestor cover trees.

Algorithm 4 shows the merging procedure. The merge
function’s main purpose is to satisfy the prerequisites for
mergeHelper, which has two phases. First, we find all
the subtrees of q that can be inserted directly into p without
violating any invariants, and we insert them. Second, we
insert the remaining nodes from q into p directly via the
insert function.

The mergeHelper function returns a partially merged
tree and a set of nodes called the leftovers that still need
to be inserted into the tree. The first phase uses the for loop
starting on line 3 to categorize the children of q into three
disjoint sets. The uncovered set contains all of q’s children
that would violate the covering invariant if inserted into p.
The sepcov set contains all of q’s children that would not

Algorithm 3 Nearest ancestor cover tree insertion
function insert (cover tree p, data point x)

1: for q ∈ children(p) sorted by distance to x do
2: if d(q,x)≤ covdist(q) then
3: q′← insert (q,x)
4: p′← p with child q replaced with q′

5: return p′

6: return rebalance(p, x)

function rebalance(cover trees p, data point x)
prerequisites: x can be added as a child of p without vio-
lating the covering or separating invariants

1: create tree x′ with root node x at level level(p)−1 x′

contains no other points
2: p′← p
3: for q ∈ children(p) do
4: (q′,moveset,stayset)← rebalance (p,q,x)
5: p′← p′ with child q replaced with q′

6: for r ∈ moveset do
7: x′← insert(x′,r)
8: return p′ with x′ added as a child

function rebalance (cover trees p and q, point x)
prerequisites: p is an ancestor of q

1: if d(p,q)> d(q,x) then
2: moveset,stayset← /0
3: for r ∈ descendants(q) do
4: if d(r, p)> d(r,x) then
5: moveset← moveset ∪{r}
6: else
7: stayset← stayset ∪{r}
8: return (null,moveset,stayset)
9: else

10: moveset′,stayset′← /0
11: q′← q
12: for r ∈ children(q) do
13: (r′,moveset,stayset)←rebalance (p,r,x)
14: moveset′← moveset∪moveset′

15: stayset′← stayset∪ stayset′

16: if r′ = null then
17: q′← q with the subtree r removed
18: else
19: q′← q with the subtree r replaced by r′

20: for r ∈ stayset ′ do
21: if d(r,q)′ ≤ covdist(q)′ then
22: q′← insert(q′,r)
23: stayset′← stayset′−{r}
24: return (q′,moveset ′,stayset ′)

violate the separating or covering invariants when inserted
into p. Both of these sets are unused in the second phase of
mergeHelper. Every child of q that is not inserted into
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the uncovered or sepcov sets gets merged with a suitable
node in children(p). This is done by recursively calling
the mergeHelper function. Any points that could not be
inserted into the results of mergeHelper get added to the
leftovers set.

In the second phase of mergeHelper, we insert as many
nodes as possible into our merged tree p′. First update the
children with the subtrees in sepcov. Then insert the root of
q. We know that d(p,q) ≤ covdist(p), so this insertion
is guaranteed not to change the level of p′. Finally, we
loop over the elements in leftovers and insert them into p′

only if it would not change the level of p′. Any elements
of leftovers that cannot be inserted into p′ get inserted into
leftovers′ and returned. It is important to do this insertion
of leftovers at the lowest level possible (rather than wait
until the recursion ends and have the insertion performed
in merge) to avoid unnecessary distance computations.

The merge function does not maintain the nearest ances-
tor invariant. A modified version of merge that calls the
rebalance function appropriately could. But for space
reasons, we do not provide this modified algorithm. In our
experiments below, we use the provided merge function
in Algorithm 4 to parallelize both simplified and nearest
ancestor tree construction. In practice, this retains the ben-
efits of the nearest ancestor cover tree because the nearest
ancestor invariant is violated in only a few places.

Providing explicit bounds on the runtime of merge is dif-
ficult. But in practice it is fast. When parallelizing on two
processors, approximately 1% of the distance calculations
occur within merge. So this is not our bottleneck. In-
stead, the main bottleneck of parallelism is cache perfor-
mance. On modern desktop computers, last level cache is
shared between all cores on a CPU. Cover tree construction
results in many cache misses, and this effect is exaggerated
when the tree is constructed in parallel.

5. Cache efficiency
One of the biggest sources of overhead in the cover tree
is cache misses. Our last improvement is to make cover
trees more cache efficient. A simple way to reduce cache
misses for tree data structures is to use the van Emde Boas
tree layout (Frigo et al., 1999). This layout arranges nodes
in memory according to a depth first traversal of the tree.
This arrangement creates a cache oblivious data structure.
That is, the programmer does not need any special knowl-
edge about the cache sizes to obtain optimal speedup—the
van Embde Boas tree layout works efficiently on any cache
architecture. This layout has been known for a long time in
the data structures community, but it seems unused in ma-
chine learning libraries. Frigo (1999) provides a detailed
tutorial.

Algorithm 4 Merging cover trees
function merge(cover tree p, cover tree q)

1: if level(q)> level(p) then
2: swap p and q
3: while level(q)< level(p) do
4: move a node from the leaf of q to the root;
5: this raises the level of q by 1
6: (p, le f tovers)← mergeHelper(p,q)
7: for r ∈ le f tovers do
8: p← insert(p,r)
9: return p

function mergeHelper(cover tree p, cover tree q)
prereqs: level(p) = level(q), d(p,q)≤ covdist(p)

1: children′← children(p) . Phase 1
2: uncovered,sepcov, leftovers← /0
3: for r ∈ children(q) do
4: if d(p,r)< covdist(p) then
5: foundmatch←false
6: for s ∈ children′ do
7: if d(s,r)≤ sepdist(p) then
8: (s′, leftoverss)← mergeHelper(s,r)
9: children′← children′∪{s′}−{s}

10: leftovers← leftovers∪ leftoverss
11: foundmatch← true
12: break from inner loop
13: if not foundmatch then
14: sepcov← sepcov∪{r}
15: else
16: uncovered← uncovered∪{r}
17: children′← children′∪ sepcov . Phase 2
18: p′← tree rooted at p with children(p’)=children′

19: p′← insert(p′,q)
20: leftovers′← /0
21: for r ∈ leftovers do
22: if d(r, p)′ ≤ covdist(p)′ then
23: p′← insert(p′,r)
24: else
25: leftovers′← leftovers′∪{r}
26: return (p′, leftovers′∪uncovered)

Our implementation of the cache oblivious cover tree is
static. That is, we first construct the cover tree, then we
call a function pack that rearranges the tree in memory.
This means we do not get the reduced cache misses while
constructing the tree, but only while querying the tree. The
pack function is essentially free to run because it requires
only a single traversal through the dataset. Figure 4 shows
that the van Emde Boas tree layout reduces cache misses
by 5 to 20 percent. This results in a reduction of stalled
CPU cycles by 2 to 15 percent.
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Figure 3. (a) Constructing a nearest ancestor query tree usually takes longer than the original cover tree and the simplified cover tree.
(b) Construction plus querying is faster in the nearest ancestor cover tree. On most datasets, this faster query time more than offsets the
increased construction cost, giving an overall speedup.
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Figure 4. (a) Comparison of our packed nearest ancestor cover tree to our unpacked tree and other implementations, demonstrating better
cache performance. (b) A stalled CPU cycle is when the CPU does no work because it must wait for a memory access. Reducing the
number of cache misses results in fewer stalled cycles, and so faster run times. We used the Linux perf stat utility to measure the
cache-references, cache-misses, cycles, and stalled-cycles-frontend hardware counters. perf stat uses a
sampling strategy with negligible affect on program performance.
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Figure 5. Run times on the “all nearest neighbor” procedure for only those datasets that take more than 5 minutes. (a) Tree construction.
A single cover tree merge takes about 1% of the computation time; the main reason for the lack of perfect parallel speedup is the increased
number of cache misses caused by inserting into multiple trees simultaneously. (b) Comparison on total performance to reference and
MLPack implementations. Runtimes in both figures are divided by that of our single processor implementation (shown in parenthesis).
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dataset num data points num dimensions
yearpredict 515345 90
twitter 583250 78
tinyImages 100000 384
mnist 70000 784
corel 68040 32
covtype 581012 55
artificial40 10000 40
faces 10304 20

Table 1. All MLPack benchmark datasets with at least 20 dimen-
sions and 10000 points, arranged in descending order by runtime
of all nearest neighbor search.

6. Experiments
We now validate our improvements empirically. Our
first experiments use the Euclidean distance on a standard
benchmark suite (described in Table 1). Our last exper-
iments use non-Euclidean metrics on data from bioinfor-
matics and computer vision. In each experiment, we use
the “all nearest neighbors” experimental setup. That is, we
first construct the cover trees on the dataset. Then, for each
point in the dataset, we find its nearest neighbor. This is a
standard technique for measuring the efficiency of nearest
neighbor algorithms.

6.1. Tree-type comparison

Our first experiment compares the performance of the three
types of cover trees: original, simplified, and nearest an-
cestor. We measure the number of distance comparisons
required to build the tree on a dataset in Figure 3(a) and
the number of distance comparisons required to find each
data point’s nearest neighbor in Figure 3(b) using Algo-
rithm 1. Distance comparisons are a good proxy measure
of runtime performance because the majority of the algo-
rithm’s runtime is spent computing distances, and it ignores
the possible unwanted confounding variable of varying op-
timization efforts. As expected, the simplified tree typically
outperforms the original tree, and the nearest ancestor tree
typically outperforms the simplified tree. We reiterate that
this reduced need for distance comparisons translates over
to all other queries provided by the space tree framework
(Curtin et al., 2013b).

6.2. Implementation comparison

We next compare our implementation against two good
cover tree implementations currently in widespread use:
the reference implementation used in the original paper
(Beygelzimer et al., 2006) and MLPack’s implementation
(Curtin et al., 2013a). Both of these programs were writ-
ten in C++ and compiled using g++ 4.4.7 with full op-
timizations. Our implementation was written in Haskell

and compiled with ghc 7.8.4 also with full optimiza-
tions.2 All tests were run on an Amazon Web Services
c3.8x-large instance with 60 GB of RAM and 32 In-
tel Xeon E5-2680 CPU cores clocked at 2.80GHz. Half
of those cores are hyperthreads, so for simplicity we only
parallelize out to 16 cores.

Since the reference implementation and MLPack only
come with the Euclidean distance built-in, we only use that
metric when comparing the three implementations. Figure
4 shows the cache performance of all three libraries. Figure
5 shows the runtime of all three libraries. Our implemen-
tation’s cache performance and parallelization speedup is
shown on the nearest ancestor cover tree. Neither the orig-
inal implementation nor MLPack support parallelization.

6.3. Graph kernels and protein function

An important problem in bioinformatics is to predict the
function of a protein based on its 3d structure. State of the
art solutions model the protein’s 3d structure as a graph and
use support vector machines (with a graph kernel) for pre-
diction. Computing graph kernels is relatively expensive,
however, so research has focused on making the graph ker-
nel computation faster (Vishwanathan et al., 2010; Sher-
vashidze et al., 2011). Such research makes graph kernels
scale to larger graphs, but does not help in the case where
there are more graphs. Our contribution is to use cover
trees to reduce the number of required kernel computations,
letting us scale to more graphs. The largest dataset in previ-
ous research contained about 1200 proteins. With our cover
tree, we perform nearest neighbor queries on all one hun-
dred thousand proteins currently registered in the Protein
Data Bank (Berman et al., 2000).

We use the random walk graph kernel in our experiment. It
performs well on protein classification and is conceptually
simple. See Vishwanathan et al. (2010) for more details.
A naive computation of this kernel takes time O(v6), where
v is the number of vertices in the graph. Vishwanathan et
al. present faster methods that take time only O(v3). While
considerably faster, it is still a relatively expensive distance
computation.

The Protein Data Bank (Berman et al., 2000) contains in-
formation on the 3d primary structure of approximately one
hundred thousand proteins. To perform our experiment, we
follow a procedure similar to that used by the PROTEIN
dataset used in the experiments in Viswanathan et al.. This
procedure constructs secondary structure graphs from the
primary structures in the Protein Data Bank using the tool
VLPG (Schäfer et al., 2012). The Protein Data Bank stores
the 3d structure of the atoms in the protein in a PDB file.

2Our code can be downloaded at http://github.com/
mikeizbicki/hlearn#covertree.
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Figure 6. The effect on runtime as we increase the number of data
points on the bionformatics data. The relationship is roughly lin-
ear, indicating protein graphs have a relatively low intrinsic di-
mensionality. As expected, the nearest ancestor cover tree per-
forms the best.

From this PDB file, we calculate the protein’s secondary
structure using the DSSP tool (Joosten et al., 2011). Then,
the tool VLPG (Schäfer et al., 2012) generates graphs from
the resulting secondary structure. Some PDB files con-
tain information for multiple graphs, and some do not con-
tain enough information to construct a graph. In total, our
dataset consists of 250,000 graphs, and a typical graph has
between 5-120 nodes and 0.1-3 edges per node. Figure 6
shows the scaling behavior of all three cover trees on this
dataset. On all of the data, the total construction and query
cost are 29% that of the original cover tree.

6.4. Earth mover’s distance

The Earth Mover’s Distance (EMD) is a distance metric be-
tween histograms designed for image classification (Rub-
ner et al., 1998). In our tests, we convert images into three
dimensional histograms of the pixel values in LabCIE color
space. LabCIE is a color space represents colors in three
dimensions. It is similar to the more familiar RGB and
CMYK color spaces, but the distances between colors more
accurately match what humans perceive color distances to
be. We construct the histogram such that each dimension
has 8 equally spaced intervals, for a total of 512 bins. We
then create a “signature” of the histogram by recording only
the 20 largest of the 512 bins.

Previous research on speeding up EMD focused on com-
puting EMD distances faster. The EMD takes a base dis-
tance as a parameter. For an arbitrary base distance, EMD
requires O(b3 logb) time where b is the size of the his-

number
of

cores

simplified tree nearest ancestor tree
construction construction

time speedup time speedup
1 70.7 min 1.0 210.9 min 1.0
2 36.6 min 1.9 94.2 min 2.2
4 18.5 min 3.8 48.5 min 4.3
8 10.2 min 6.9 25.3 min 8.3

16 6.7 min 10.5 12.0 min 17.6

Table 2. Parallel cover tree construction using the earth movers
distance. On this large dataset with an expensive metric, we see
better parallel speedup than on the datasets with the cheaper L2
metric. The nearest ancestor cover tree gets super-linear parallel
speedup because we are merging with Algorithm 4, which does
not attempt to rebalance.

togram signature. Faster algorithms exist for specific base
metrics. For example, with an L1 base metric the EMD can
be computed in time O(b2) (Ling & Okada, 2007); and if
the base metric is a so-called “thresholded metric,” we can
get an order of magnitude constant factor speed up (Pele &
Werman, 2009). We specifically chose the LabCIE color
space because there is no known faster EMD algorithm. It
will stress-test our cover tree implementation.

In this experiment, we use the Yahoo! Flickr Creative Com-
mons dataset. The dataset contains 1.5 million images in its
training set, and we construct simplified and nearest ances-
tor cover trees in parallel on this data. Construction times
are shown in Table 2. Using the cheap L2 distance with
smaller datasets, tree construction happens quickly and so
parallelization is less important. But with an expensive dis-
tance on this larger dataset, parallel construction makes a
big difference.

7. Conclusion
We’ve simplified the definition of the cover tree, and intro-
duced the new nearest ancestor invariant that speeds up the
cover tree in practice. It is possible that other invariants
exist that will balance the tree better, providing even more
speed improvements.
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Abstract

A piecewise-constant conditional intensity
model (PCIM) is a non-Markovian model of
temporal stochastic dependencies in continuous-
time event streams. It allows efficient learning
and forecasting given complete trajectories.
However, no general inference algorithm has
been developed for PCIMs. We propose an
effective and efficient auxiliary Gibbs sampler
for inference in PCIM, based on the idea of
thinning for inhomogeneous Poisson processes.
The sampler alternates between sampling a finite
set of auxiliary virtual events with adaptive rates,
and performing an efficient forward-backward
pass at discrete times to generate samples.
We show that our sampler can successfully
perform inference tasks in both Markovian and
non-Markovian models, and can be employed
in Expectation-Maximization PCIM parameter
estimation and structural learning with partially
observed data.

1 Introduction

Modeling temporal dependencies in event streams has wide
applications. For example, users’ behaviors in online shop-
ping and web searches, social network activities, and ma-
chines’ responses in datacenter management can each be
viewed as a stream of events over time. Models that can
successfully learn the complex dependencies among events
(both label and timing) allow targeted online advertising,
automatic policy selection in datacenter management, user
behavior modeling, or event prediction and dependency un-
derstanding in general.

[Gunawardana et al., 2011] proposed the piecewise-
constant conditional intensity model (PCIM) which
captures the dependencies among the types of events
through a set of piecewise-constant conditional intensity

functions. A PCIM is represented as a set of decision trees,
which allow for efficient model selection. Forecasting via
forward sampling is also simple by iteratively sampling
next events based on the current history.

However, currently model selection and forecasting for
PCIMs is only effective given complete data. When
there are missing data, an inference method is needed to
answer general queries or be employed in expectation-
maximization (EM) algorithms for model selection and pa-
rameter learning. Currently, no inference algorithm has
been proposed for PCIM that can condition on general evi-
dence.

In this work, we propose the first general inference algo-
rithm for PCIMs, based on the idea of thinning for in-
homogeneous Poisson process [Lewis and Shedler, 1979].
This results in an auxiliary Gibbs sampler that alternates
between sampling a finite set of virtual event times given
the current trajectory, and then sampling a new trajectory
given the set of evidences and event times (virtual and
actual). Our method is convergent, does not involve ap-
proximations like fixed time-discretization, and the sam-
ples generated can answer any type of query. We pro-
pose an efficient state-vector representation to maintain
only necessary information for diverging trajectories, re-
ducing the exponentially increasing sampling complexity
to linear in most cases. We show empirically our infer-
ence algorithm converges to the true distribution, permits
effective query answering, and aids model selection with
incomplete data for PCIM models with both Markovian
and complex non-Markovian dynamics. We also show the
connection between PCIMs and continuous-time Bayesian
networks (CTBNs), and compare our method with an ex-
isting method on such models.

2 Previous Work

A dynamic Bayesian network (DBN)
[Dean and Kanazawa, 1988] models temporal depen-
dencies between variables in discrete time. For systems
that evolve asynchronously without a global clock, it is
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often not clear how timestamps should be discretized.
Health records, computer server logs, and social networks
are examples of asynchronous event data streams. For such
systems, too slow a sampling rate would poorly represent
the data, while too fast a sampling rate makes learning and
inference more costly.

Continuous-time models have drawn attention recently in
applications ranging from social networks [Du et al., 2013,
Saito et al., 2009, Linderman and Adams, 2014] to ge-
netics [Cohn et al., 2009] to biochemical networks
[Golightly and Wilkinson, 2011]. Continuous Time
Bayesian Networks (CTBN) [Nodelman et al., 2002] are
homogeneous Markovian models of the joint trajectories
of discrete finite variables, analogous to DBNs. Non-
Markovian continuous models allow the rate of an event to
be a function of the process’s history. Poisson Networks
[Rajaram et al., 2005] constrain this function to depend
only on the counts of the number of events during a finite
time window. Poisson cascades [Simma and Jordan, 2010]
define the rate function to be the sum of a kernel applied to
each historic event, and requires the modeler to choose a
parametric form for temporal dependencies.

A PCIM defines the intensity function as decision trees,
with internal nodes’ tests mapping time and history to
leaves. Each leaf is associated with a constant rate. A
PCIM is able to model non-Markovian temporal depen-
dencies, and is an order of magnitude faster to learn than
Poisson networks. Applications include modeling super-
computer event logs and forecasting future interests of web
search users. While PCIMs have been extended in a num-
ber of ways [Parikh et al., 2012, Weiss and Page, 2013],
there is no general inference algorithms.

Inference algorithms developed for continuous systems
are mainly for Markovian models or specifically de-
signed for a particular application. For CTBNs, there
are variational approaches such as expectation propagation
[El-Hay et al., 2010] and mean field [Cohn et al., 2009],
which do not converge to the true value as computation
time increases. Sampling based approaches include im-
portance sampling [Fan et al., 2010] and Gibbs sampling
[Rao and Teh, 2011, Rao and Teh, 2013] that converge to
the true value. The latter is the current state-of-the-
art method designed for general Markov Jump Processes
(MJPs) and its extensions (including CTBNs). It uses
the idea of uniformization [Grassmann, 1977] for Markov
models, similar to thinning [Lewis and Shedler, 1979] for
inhomogeneous Poisson processes. We note that our infer-
ence method generalizes theirs to non-Markovian models.

3 PCIM Background

Assume events are drawn from a finite label setL. An event
then can be represented by a time-stamp t and a label l.
An event sequence x = {(ti, li)}ni=1, where 0 < t1 <

λ = 0.01 λ = 2

λ = 0.5

Are there ≥ 1 A
events in [t-1,t)?

λA

Are there ≥ 1 B
events in [t-1,t)?

λB

λ = 0.01 λ = 2 λ = 0.1 λ = 0.01

Y N

Y N Y N Y N

Y N

Are there ≥ 1 B
events in [t-2,t-1)?

Are there ≥ 1 A
events in [t-5,t)?

Are there ≥ 1 A
events in [t-2,t-1)?

Figure 1: Decision tree representing S and θ for events of
labels A and B. Note the dependency among event labels
(the rate of B depends on A). [Gunawardana et al., 2011]

. . . < tn. We use hi = {(tj , lj) | (tj , lj) ∈ x, tj < ti)}
for the history of event i, when it is clear from context
which x is meant. We define the ending time t(y) of an
event sequence y as the time of the last event in y, so that
t(hi) = ti−1. A conditional intensity model (CIM) is a set
of non-negative conditional intensity functions indexed by
label {λl(t|x; θ)}|L|l=1. The data likelihood is

p(x|θ) =
∏

l∈L

n∏

i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
t(h)

λl(τ |h; θ)dτ . The indicator func-

tion 1l(l
′
) is one if l

′
= l and zero otherwise. λl(t|h; θ)

is the expected rate of event l at time t given history h
and model parameters θ. Conditioning on the entire history
causes the process to be non-Markovian. The modeling as-
sumptions for a CIM are quite weak, as any distribution for
x in which the timestamps are continuous random variables
can be written in this form. Despite the weak assumptions,
the per-label conditional factorization allows the modeling
of label-specific dependence on past events.

A PCIM is a particular class of CIM that restricts λ(h) to
be piecewise constant (as a function of time) for any his-
tory, so the integral for Λ breaks down into a finite number
of components and forward sampling becomes feasible. A
PCIM represents the conditional intensity functions with
decision trees. Each internal node in a tree is a binary test
of the history, and each leaf contains an intensity. If the
tests are piecewise-constant functions of time for any event
history, the resulting function λ(t|h) is piecewise-constant.
Examples of admissible tests include

• Was the most recent event of label l?
• Is the time of the day between 6am and 9am?
• Did an event with label l happen at least n times be-

tween 5 seconds ago and 2 seconds ago?
• Were the last two events of the same label?

Note some tests are non-Markovian in that they require
knowledge of more than just which event was most recent.
See Fig. 1 for an example of a PCIM model.

The decision tree for label l maps the time and history to a
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leaf s ∈ Σl, where Σl is the set of leaves for l. The resulting
data likelihood can be simplified:

p(x|S, θ) =
∏

l∈L

∏

s∈Σl

λ
cls(x)
ls e−λlsdls(x). (2)

S is the PCIM structure represented by the decision trees;
the model parameters θ are rates at the leaves. cls(x) is the
number of times label l occurs in x and is mapped to leaf
s. dls(x) is the total duration when the event trajectory for
l is mapped to s. c and d are the sufficient statistics for
calculating data likelihood.

[Gunawardana et al., 2011] showed that given the structure
S, by using a product of Gamma distributions as a conju-
gate prior for θ, the marginal likelihood of the data can be
given in closed form, and thus parameter estimation can be
done in closed form. Furthermore, imposing a structural
prior allows a closed form Bayesian score to be used for
greedy tree learning.

4 Auxiliary Gibbs Sampling for PCIM

In this section we introduce our new inference algorithm
for PCIM, called ThinnedGibbs, based on the idea of thin-
ning for inhomogeneous Poisson processes. We handle in-
complete data in which there are intervals of time during
which events for particular label(s) are not observed.

4.1 Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard
due to the complex dependencies between unobserved
events and both past and future events. See Fig. 2 for an
example. While the history (the event at t) says it is likely
that there should be events in the unobserved area (with an
expected rate of 2), future evidence (no events inR) is con-
tradictory: If there were indeed events in the unobserved
area, those events should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms
such as the forward-filtering-backward-sampling (FFBS)
algorithm for discrete-time Markov chains. However,
there are two subtleties here: First, we are dealing with
non-Markovian models. Second, we are dealing with
continuous-time systems, so the number of time steps over
which to propagate is infinite.

4.2 Thinning

Thinning [Lewis and Shedler, 1979] can be used to turn a
continuous-time process into a discrete-time one, without
using a fixed time-slice granularity. We select a rate λ∗

greater than any in the inhomogeneous Poisson process and
sample from a homogeneous process with this rate. To get a
sample from the original inhomogeneous process, an event
at time t is thinned (dropped) with probability 1− λ(t)

λ∗ .

λ = 0.1

Are there ≥ 1 l
events in [t-2,t-1)?

λl

Y N

λ = 2
t t+1 t+2

R

Figure 2: A simple PCIM with a partially observed trajec-
tory. The vertical solid arrow indicates an evidence event.
Areas between parentheses are unobserved. History alone
indicates there should be events filled in, while the future
(no events in R) provides contradictory evidence.

This process can also be reversed. If given the set of
thinned event times (samples from the inhomogeneous pro-
cess), extra events can be added to a sample from the orig-
inal constant-rate process by sampling from a Poisson pro-
cess with rate λ∗ − λ(t). The cycle can then repeat by
thinning the new total set of times (ignoring how they were
generated). At each cycle, the times (after thinning) are
drawn from the original inhomogeneous process. It is this
type of cycle we will employ in our sampler.

The difficulty is a PCIM is not an inhomogeneous Pois-
son process. Its intensity depends on the entire history of
events, not just the current time. For thinning, this means
that we cannot independently sample whether each event is
to be thinned. Furthermore, we wish to sample from the
posterior process, conditioned on evidence. All evidence
(both past and future) affect the probability of a specific
thinning configuration.

4.3 Overview of Our Method

To overcome both of these problems, we extend thin-
ning to an auxiliary Gibbs sampler in the same way
that [Rao and Teh, 2011, Rao and Teh, 2013] extended
Markovian-model uniformization [Grassmann, 1977] (a
specific example of thinning in a Markov process) to a
Gibbs sampler. To do this we introduce auxiliary variables
representing the events that were dropped. We call these
events virtual events.

As a standard Gibbs sampler, our method cycles through
each variable in turn. In our case, a variable corresponds
to an event label. For event label l, let xl be the sampled
event sequence for this label. Let Yl be all evidence (for l
and other labels) and all (currently fixed) samples for other
labels. Our goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) associ-
ated with l and zl = xl ∪ vl (all event times, virtual and
non-virtual). Our method first samples from p(vl | xl, Yl)
and then samples from p(xl | zl, Yl). The first step adds vir-
tual events given the non-virtual events are “correct.” The
second step treats all events as potential events and drops or
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keeps events. The dropped events are removed completely.
The kept events, xl, remain as the new sampled trajectory.

The proof of correctness follows analogously to that of
[Rao and Teh, 2013] for Markovian systems. However, the
details for sampling from p(vl | xl, Yl) and p(xl | zl, Yl)
differ. We describe them next.

4.4 Sampling Auxiliary Virtual Events with Adaptive
Rates

Sampling from p(vl | xl, Yl) amounts to adding just the
virtual (dropped) events. As the full trajectory (xl for all
l) is known, the rate at any time step for a virtual event
is independent of any other virtual events. Therefore, the
process is an inhomogeneous Poisson process for which the
rate at t is equal to λ∗−λl(t|h) where h is fully determined
by xl and Yl. Recall that λl(t|h) is piecewise-constant in
time, so sampling from such an inhomogeneous Poisson
process is simple.

The auxiliary rate, λ∗, must be strictly greater than the
maximum rate possible for irreducibility. We use an aux-
iliary rate of λ∗ = 2 max(λ(t|h)) to sample virtual events
in the unobserved intervals. This choice balances mixing
time (better with higher λ∗) and computational complexity
(better with lower λ∗).

A naı̈ve way to pick λ∗ is to find λmax: the maximum rate
in the leaves of PCIM, and use 2λmax. However, there
could be unobserved time intervals with a possible maxi-
mum rate much smaller than λmax. Using λmax in those
regions would generate too many virtual events, most of
which will be dropped in the next step leading to computa-
tional inefficiency. We therefore use an adaptive strategy.

Our adaptive λ∗(t|h) cannot depend on xl (this would
break the simplicity of sampling mentioned above). There-
fore, we determine λ∗(t|h) by passing (t, h) down the
PCIM tree for λl. At each internal node, if the branch does
not depend on xl, we can directly take one branch. Other-
wise, the test is related to the sampled events, and we take
the maximum rate of taking both branches. This method
results in λ∗(t|h) as a piecewise-constant function of time
(for the same reasons that λl(t|h) is piecewise-constant).

Consider Fig. 3 as an example. When sampling event l = A
on the interval [1, 5), we would not take the left branch at
the root (no matter what events for A have been sampled),
but must maximize over the other two leaves (as different
xl values would result in different leaves). This results in a
λ∗ = 4 over this interval, which is smaller than 6.

4.5 The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl (the
union of virtual events and “real” sampled events) as a sam-
ple from the Poisson process with rate λ∗ and ignore which

Are there ≥ 1 B
events in [t-5,t)?

λA

Y N

λ = 3
1 3 8

A

5
B

λ∗ = 4 λ∗ = 6

λ = 2 λ = 1

Y N

Are there ≥ 1 A
events in [t-1,t)?

Figure 3: Adaptive auxiliary rate example. When sampling
A, the branch to take at the root does not depend on un-
observed events for A. If the test is related to the sampled
event, we take the maximum rate from both branches. The
red arrows indicate the branches to take between time [1, 5],
and λ∗ = 2× 2 in that interval, instead of 6.

were originally virtual and which were originally “real.”
We then thin this set to get a sample from the conditional
marginal over l.

The restriction to consider events only at times in zl trans-
forms the continuous-time problem into a discrete one.
Given zl with m possible event times (zl,1, zl,2, . . . , zl,m),
let b = {bi}mi=1 be a set of binary variables, one per event,
where bi = 1 if event i is included in xl (otherwise bi = 0
and the event is not included in xl). Thus sampling b is
equivalent to sampling xl (zl is known) as it specifies which
events in zl are in xl. Let Y i:jl be the portion of Y between
times zl,i and zl,j , and bi:j = {bk|i ≤ k ≤ j}We wish to
sample b (and thereby xl) from p(b | Y ) ∝
(∏

i

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l )

)
p(Y m:∞

l | b) (3)

where the final Y m:∞
l signifies all of the evidence after the

last virtual event time zl,m and can be handled similarly to
the other terms.

The most straight-forward method for such sampling con-
siders each possible assignment to b (of which there are
2m). For each interval, we multiply terms from Eq. 3 of the
form p(Y i−1:i

l , bi | b1:i−1, Y 1:i−1
l ) =

p(Y i−1:i
l | b1:i−1, Y 1:i−1

l )p(bi | b1:i−1, Y 1:i
l ) (4)

where the first term is the likelihood of the trajectory inter-
val from zl,i−1 to zl,i and the second term is the probability
of the event being thinned, given the past history. The first
can be computed by tallying the sufficient statistics (counts
and durations) and applying Eq. 2. Note that these suf-
ficient statistics take into account b1:i−1 which specifies
events for l during the unobserved region(s), and the like-
lihood must also be calculated for labels l′ 6= l for which
λl′(t|h) depends on events from l. The second term is equal
to λl(t|h)

λ∗(t) if bi = 1 (and 1− λl(t|h)
λ∗(t) if bi = 0). The numer-

ator’s dependence on the full history similarly dictates a
dependence on b1:i−1.
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This might be formulated as a naı̈ve FFBS algorithm: To
generate one sample, we propagate possible trajectories
forward in time, multiplying in Eq. 4 at each inter-event
interval to account for the evidence. Every time we see
a virtual event, each possible trajectory diverges into two
(depending on whether the virtual event is to be thinned or
not). By the end, we have all 2m possible trajectories, each
with its probability (Eq. 3). We sample one trajectory as
the output, in proportion of the calculated likelihoods. As
we explicitly keep all possible trajectories, the sampled tra-
jectory immediately tells us which virtual events are kept,
so no actual backward pass is needed.

4.6 An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is clearly not practical, as the
number of possible trajectories grows exponentially with
the number of auxiliary virtual events (m). We propose
a more efficient state-vector representation to only keep
the necessary information for each possible trajectory. The
idea takes advantage of the structure of the PCIM and leads
to state merges, similar to what happens in FFBS for hidden
Markov models (HMMs).

The terms in Eq. 4 depend on b1:i−1 only through the tests
in the internal nodes of the PCIM trees. Therefore, we do
not have to keep track of all of b1:i−1 to calculate these like-
lihoods, but only the current state of such tests that depend
on events with label l. For example, a test that asks “Is the
last event of label l?” only needs to maintain a bit as the
indicator. The test “Are there more than 3 events of label q
in the last 5 seconds?” for q 6= l has no state, as b1:i−1 does
not affect its choice. By contrast, a test such as “Is the last
event of label q?” does depend on b, even if q 6= l.

As we propagate forward, we merge b1:i sequences that re-
sult in the same set of states for all internal tests inside the
PCIM. See Fig. 4 as a simple example. Though there are
8 possible trajectories, they merge to only 2 states that we
can sample from. Similar to FFBS for HMM, we need to
maintain the transition probabilities in the forward pass and
use them in a backward sampling pass to recover the full
trajectory, but such information is also linear.

Note that this conversion to a Markov system for sam-
pling is not possible in the original continuous-time sys-
tem. Thinning has allows it by randomly selecting a few
discrete time points, thereby restricting the possible state
space to be finite.

The state space depends on the actual tests in the PCIM
model. See Tbl. 1 for the tests we currently support and
their state representations. The LastStateTest and StateTest
are used to support discrete finite variable systems such as
CTBN, as we will use in Sec. 5 and in experiments. Note
the EventCountTest was the only supported test in the orig-
inal PCIM paper. We can see that for tests that only depend
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event label A?
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false
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b1 b2 b3
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b1=0

b2=1

b2=0

b3=1

b3=0
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Figure 4: Dotted events are the virtual events that we sam-
ple as binary variables (bi is 1 if event i is kept). The state
diagram below the trajectory indicates the state of the test
as we diverge (keep or drop a virtual event). Though there
are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

on the current time (i.e. TimeTest), the diverging history
does not affect them, so no state is needed. For Marko-
vian tests (LastEventTest and LastStateTest), we only need
a Boolean variable. For the non-Markovian test (Event-
CountTest), the number of possible states does grow expo-
nentially with the number of virtual events maintained in
the queue. This is the best we can do and still be exact. It
is much better than growing with the number of all virtual
events. However, note that commonly lag2 = 0 and n is
a small number. In this case, the state space size at any
point is bounded as

(
m′

n

)
, where m′ is the maximum num-

ber of sampled events in any time interval of duration lag1
(which is upper bounded by m). If n is 1, this is linear in
the number of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled
event (for example, in sampling event l = A with test “are
there ≥3 B events in the last 5 seconds”), the state of the
test is null. This is because the evidence and sampled val-
ues for B (not the current variable for Gibbs sampling) can
answer this test without reference to samples of l.

See Alg. 1 for the algorithm description for resampling
event l. The complete algorithm iterates this procedure for
each event label to get a new sample. The helper func-
tion UpdateState(s,b,t) returns the new state given the old
state (s), the new time (t), and whether an event occurs at
t (b). SampProbMap(M) takes a mapping from objects to
positive values (M) and randomly returns one of the ob-
jects with probability proportional to the associate value.
AddtoProbMap(M,o,p) checks to see if o is in M. If so, it
adds p to the associated probability. Otherwise, it adds the
mapping o→ p to M.

4.7 Extended Example

Fig. 5 shows an example of resampling the events for label
A on the unobserved interval [0.8, 3.5). On the far left is
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Table 1: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event A? Boolean Markovian
EventCountTest Are there >= n A event in [t −

lag1, t− lag2]?
A queue maintaining all the times of A
between [t−lag2, t], and the most recent
n events between [t− lag1, t− lag2].

Non-Markovian

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of varA=0? Null independent of b

A

B
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Figure 5: Extended Example, see Section 4.7

the PCIM rate tree for event A. Box (a) shows the sam-
ple from previous iteration (single event at 2.3). Dashed
lines and λ show the piecewise-constant intensity function
given the sample. Box (b) shows the sampling of virtual
events. For this case λ∗ = 3 for all time. λ∗ − λ is the
rate for virtual events. The algorithm samples from this
process, resulting in two virtual events (dashed). In box (c)
all events become potential events. The state of the root
test is a queue of recent events. The state of the other test
is Boolean (whether A is more recent). On the bottom is
the lattice of joint states over time. Solid arrows indicate
bi = 1 (the event is kept). Dash arrows indicate bi = 0
(the event is dropped). Each arrow’s weight is as per Eq. 4.
The probability of a node is the sum over all paths to the
node of the product of the weights on the path (calculated
by dynamic programming). In box (d) a single path is sam-
pled with backward sampling, shown in bold. This path
corresponds to keeping the first and last virtual events and
dropping the middle one.

5 Representing CTBNs as PCIMs

A non-Markovian PCIM is more general than the Marko-
vian CTBN model. We can, therefore represent a CTBN
using a PCIM. In this way, we can extend PCIMs and we

QA|B=0 =

[
−1 1

2 −2

]

QA|B=1 =

[
−10 10

20 −20

]

AB

CTBN PCIM

λA

Last B
subevent=0?

Last A
subevent=0?

Last A
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

λ=20λ=10λ=0λ=0λ=2λ=1λ=0 λ=0

Y N

Y N Y N

Y NY NY NY N

Figure 6: Explicit conversion from a CTBN to a PCIM by
using specific tests. Only rates for variable A shown. The
colored arrows and boxes show one-to-one correspondence
of a path in the tree and an entry in the rate matrix of CTBN.
Diagonal elements in the CTBN are redundant and do not
need to be represented in the PCIM.

can compare our PCIM method with existing methods for
CTBNs.

We associate a PCIM label with each CTBN variable. We
also augment the notion of a PCIM label to include a sub-
label. For each CTBN variable, its PCIM label has one
sublabel for each state of the CTBN variable. Therefore, a

90
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Algorithm 1 Resampling event l
input: The previous trajectory (xl,Yl)
output: The newly sampled x

′
l

1: for each unobserved interval for l do
2: Find piecewise constant λ∗(t|h) using Yl
3: Find piecewise constant λ(t|h) using xl, Yl
4: Sample virtual events vl with rate λ∗(t|h)− λ(t|h)

5: Let zl = xl ∪ vl, m = |zl|, and s0 be the initial state
6: AddtoProbMap(S0,s0,1.0)
7: for i← 1 to m do
8: for each {(si−1, ·)→ p} in Si−1 do
9: pkeep = p(Ei−1:i, bi = 1 | si−1, E1:i−1)

10: pdrop = p(Ei−1:i, bi = 0 | si−1, E1:i−1)

11: skeepi ← UpdateState(si−1, true, zl,i)
12: sdropi ← UpdateState(si−1, false, zl,i)
13: AddtoProbMap(Si,(s

keep
i , zl,i), p×pkeep)

14: AddtoProbMap(Si,(s
drop
i , ∅), p×pdrop)

15: AddtoProbMap(Ti(s
keep
i ), (si−1, zl,i), p×pkeep)

16: AddtoProbMap(Ti(s
drop
i ), (si−1, ∅), p×pdrop)

17: Update Sm by propagating until ending time
18: x

′
l ← ∅ and (s

′
m, t)← SampProbMap(Sm)

19: if t 6= ∅ then x
′
l ← x

′
l ∪ {t}

20: for i← m− 1 to 1 do
21: (s

′
i, t)← SampProbMap(Ti+1(s

′
i+1))

22: if t 6= ∅ then x
′
l ← x

′
l ∪ {t}

23: return x
′
l

PCIM event with label X and sublabel x corresponds to a
transition of the CTBN variable X from its previous value
to the value x. The PCIM trees’ tests can also check the
sublabel associated with the possible event.

We augment the auxiliary Gibbs sampler to not only sam-
ple which virtual events are kept, but also which sublabel is
associated with each. This involves modifying the bi vari-
ables from the previous section to be multi-valued. Other-
wise, the algorithm proceeds the same way.

The last two tests in Tbl. 1 are explicitly for this type of
sublabelled event model. We can use them to turn a con-
ditional intensity matrix from the CTBN into a PCIM tree.
Fig. 6 shows the conversion of the “twonode” model.

6 Experiments

We implement our method as part of an open source code
base, and all the code and data will be publicly available.

We perform two sets of experiments to validate our method.
First we perform inference with our method on both
Markovian and non-Markovian models, and compare the
result with the ground-truth statistics. For both we show
our result converges to the correct result. Ours is the

Figure 7: The toroid network and observed patterns
[El-Hay et al., 2010].

10
2

10
3

10
−3

10
−2

10
−1

10
0

# of samples

K
L 

D
iv

er
ge

nc
e

ThinnedGibbs
AuxGibbs

Figure 8: Number of samples versus KL divergence for the
toroid network. Both axes are on a log scale.

first that can successfully perform inference tasks on non-
Markovian PCIMs. For the second set of experiments, we
use ThinnedGibbs in EM for both parameter estimation
and structural learning for a non-Markovian PCIM. Our in-
ference algorithm can indeed help producing models that
achieve higher data likelihood on holdout test data than sev-
eral baseline methods.

6.1 Verification on the Ising Model

We first evaluate our method, ThinnedGibbs, on a network
with Ising model dynamics. The Ising model is a well-
known interaction model with applications in many fields
including statistical mechanics, genetics, and neuroscience.
This is a Markovian model and has been tested by several
existing inference methods designed for CTBNs.

Using this model, we generate a directed toroid net-
work structure with cycles following [El-Hay et al., 2010].
Nodes can take values −1 and 1, and follow their parents’
states according to a coupling strength parameter (β). A
rate parameter (τ ) determines how fast nodes toggle be-
tween states. We test with β = 0.5 and τ = 2. The net-
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Figure 9: Non-Markovian PCIM and evidence. The ending
time is 5.

work and the evidence patterns are shown in Fig. 7. The
nodes are not observed between t = 0 and t = 1. We
query the marginal distribution of nodes at t = 0.5 and
measure the sum of the KL-divergences of all marginals
against the ground truth. We compare with the state-of-the-
art CTBN Auxiliary Gibbs method [Rao and Teh, 2013].
Other existing methods either produce similar or worse re-
sults [Celikkaya and Shelton, 2014]. We vary the sample
size between 50 and 5000, and set the burn-in period to be
10% of this value. We run the experiments for 100 times,
and plot the means and standard deviations.

Results in Fig. 8 verify that our inference method in-
deed produces results that converge to the true distribution.
Our method reduces to that of [Rao and Teh, 2013] in this
Markovian model. Differences between the two lines are
due to slightly different initializations of the Gibbs Markov
chain and not significant.

6.2 Verification on a Non-Markovian Model

We further verify our method on a much more challeng-
ing non-Markovian PCIM (Fig. 9). This model contains
several non-Markovian EventCountTests. We have obser-
vations for event A at t = 0.4, 0.6, 1.8, 4.7 and for event
B at t = 0.1, 0.2, 3.4, 3.6, 3.7. Event A is not observed on
[2.0, 4.0) and event B is not observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted
the system to a Markovian system. Note that because the
time since the last A event is part of the state, as the dis-
cretization becomes finer, the state space increases. For
this small example, this approach is just barely feasible. We
continued to refine the discretization until the answer stabi-
lized. The ground-truth expected total number of A events
between [0, 5] is 22.3206 and the expected total number of
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Figure 10: Number of samples versus the inferred expected
number of events. The horizontal axis is on a log scale.

B events is 11.6161. That is, there are about 18.32A events
and 6.62 B events in the unobserved areas. Note that if the
evidence is changed to have no events these numbers drop
to 1.6089 and 8.6866 respectively and if the evidence af-
ter the unobserved intervals is ignored the expectations are
22.7183 and 8.6344 respectively. Therefore the evidence
(both before and after the unobserved intervals) is impor-
tant to incorporate in inference.

We compare our inference method to the exact values,
again varying the sample size between 50 and 5000 and
setting the burn-in period to be 10% of this value. We ran
the experiments 100 times and report the mean and stan-
dard deviation of the two expectations. Our sampler has
very small bias and therefore the average values match the
true value almost exactly. The variance decreases as ex-
pected, demonstrating the consistent nature of our method.
See Fig. 10. We are not aware of existing methods that can
perform inference on this type of model to which we could
compare.

6.3 Parameter Estimation and Structural Learning

We further test ThinnedGibbs by using it in EM, for both
parameter estimation (given the tree structure, estimate the
rates in the leaves), and structural learning (learn both the
structure and rates). We use Monte Carlo EM that iterates
between two steps: First, given a model we generate sam-
ples conditioned on evidence with ThinnedGibbs. Second,
given the samples, we treat them as complete trajectories
and perform parameter estimation and structural learning,
which is efficient for PCIM. We initialize the model from
the partial trajectories, assuming no events occur in the un-
observed intervals. EM terminates when the parameters of
PCIMs in two consecutive iterations are stable (all rates
change less than 10% from the previous ones), or the num-
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Figure 11: Parameter estimation. Testing log-likelihood as
a function of the number of training samples.
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Figure 12: Structure and parameter estimation. Testing log-
likelihood as a function of the number of training examples.

ber of iterations surpasses 10. For structural learning, the
structure needs to be the same between iterations.

We use the model in Fig. 1 and generate complete trajecto-
ries for time range [0, 10). We vary the number of training
samples (5, 10, 15, and 20) and use a fixed set of 100 trajec-
tories as the testing data. For each training size, we use the
same the training data for all algorithms and runs. We ran-
domly generate an unobserved interval with length 0.6×T
for both event labels. For each training sample, ThinnedG-
ibbs fills it in to generate a new sample after burning in 10
steps. For each configuration, we run ThinnedGibbs for 5
times. We measure the data likelihood of the holdout test-
ing data on the learned models.

For parameter estimation, we compare with the true model
that generated the data, the model learned with only par-
tial data in which we assume no events happened during
unseen intervals (Partial Data), and a model learned with
complete training data (Complete Data). The results are
summarized in Fig. 11. We can see that the model learned

by EM algorithm using ThinnedGibbs can indeed produce
significantly higher testing likelihood than using only par-
tial data. Of course, we do not do as well as if none of the
data had been hidden (Complete Data).

If learning the structure, there is one other possibility: We
could use the original fast PCIM learning method, but in-
dicate (by new event labels) when an unobserved interval
starts and stops. We augment the bank of possible decisions
to include testing if each pseudo-events have occurred most
recently. In this way, the PCIM directly models the process
that obscures the data. Of course, at test time, branches
modeling such unobserved times are not used. Such model
should serve as a better baseline than learning from par-
tially observed data, because it can potentially learn unob-
served patterns and only use the dependencies in the ob-
served intervals for a better model. We call this model
EMUP (explicit modeling of unobserved patterns).

For structure learning, we fix the bank of possible
PCIM tests as EventCountTests with (l, n, lag1, lag2) ∈
{A,B}× {1, 2}× {2, 3, 4, 5, 6}× {0, 1, 2} (omitting tests
for which lag1 ≤ lag2). For EMUP we also allow testing
if currently in unobserved interval. The results are summa-
rized in Fig. 12. We can see that EMUP does outperform
models using only partial data. However, Structural EM
with ThinnedGibbs still performs better. The performance
gain is less than that in the parameter estimation task, prob-
ably because there are more local optimums for structural
EM, especially with fewer training examples.

7 Discussion and Future Work

We proposed the first effective inference algorithm,
ThinnedGibbs, for PCIM. Our auxiliary Gibbs sampling
method effectively transforms a continuous-time problem
into a discrete one. Our state-vector representation of di-
verging trajectories takes advantage of state merges and
reduces complexity from exponential to linear for most
cases. We build the connection between PCIM and CTBN,
and show our method generalizes the state-of-art inference
method for CTBN models. In experiments we validate our
idea on non-Markovian PCIMs, which is the first to do so.

Our method converges to the exact conditional distribution.
If the true state of the model indeed grows exponentially,
the complexity of ThinnedGibbs follows. We believe this
technique could also be applied to other non-Markovian
processes. The challenge lies in computing the forward-
pass likelihoods when the rate function is not piecewise-
constant.
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Social Grouping for Multi-target Tracking and
Head Pose Estimation in Video

Zhen Qin and Christian R. Shelton

Abstract—Many computer vision tasks are more difficult when tackled without contextual information. For example, in multi-
camera tracking, pedestrians may look very different in different cameras with varying pose and lighting conditions. Similarly,
head direction estimation in high-angle surveillance video in which human head images are low resolution is challenging. Even
humans can have trouble without contextual information. In this work, we couple novel contextual information, social grouping,
with two important computer vision tasks: multi-target tracking and head pose/direction estimation in surveillance video. These
three components are modeled in a probabilistic formulation and we provide effective solvers. We show that social grouping
effectively helps to mitigate visual ambiguities in multi-camera tracking and head pose estimation. We further notice that in
single-camera multi-target tracking, social grouping provides a natural high-order association cue that avoids existing complex
algorithms for high-order track association. In experiments, we demonstrate improvements with our model over models without
social grouping context and several state-of-art approaches on a number of publicly available datasets on tracking, head pose
estimation, and group discovery.

Index Terms—Multi-target tracking, multi-camera tracking, head pose estimation, social grouping, video analysis, context.

F

1 INTRODUCTION

I T is difficult to achieve satisfactory results purely by
using visual information for many computer vision tasks

due to the inherent visual ambiguities in real-world images
and videos. Take multi-camera tracking as an example.
Pedestrians may look quite different under cameras with
varying conditions. Another example is head pose estima-
tion in high-angle surveillance video. (We focus on yaw
angle estimation in such scenarios.) Human head images
are usually of low resolution, which makes visual evidence
unreliable (see Fig. 1). Thus, contextual information is
needed for these tasks.

We introduce social grouping as one such context. So-
ciology research [29] shows that in natural scenes up
to 70% of people walk in groups, possessing similar
trajectories, speed, and destinations. These factors should
help to disambiguate confusing tracking decisions in both
single-camera (similar trajectories and speed) and multi-
camera tracking (similar destinations). For example, in
multi-camera tracking, the tracker usually finds it difficult to
decide linking or splitting two detections, since one person
usually looks quite different in two cameras. However, if the
two detections are accompanied by another person, linking
is preferred. It is also intuitively clear that when people
form groups, their head directions are correlated, as they
tend to look at each other or the same area of interest.

In this work, we provide a probabilistic framework
with effective solvers to utilize social grouping for visual

• Z. Qin and C. R. Shelton are with the Department of Computer Science
and Engineering, University of California, Riverside, Riverside, CA,
92521.
E-mail: {zqin001, cshelton}@cs.ucr.edu
This work was supported by DARPA

tracking and head pose estimation. The joint optimization
of tracking and social grouping is modeled as a constrained
nonlinear optimization problem, which results in steps
involving standard fast procedures. Head pose estimation
in groups is modeled as a graph labeling problem using
a conditional random field (CRF) that allows exact con-
vex learning and inference, with tractability supported by
sociology research. The generality of our social grouping
model makes it applicable to most existing tracklet linking
and head pose estimation frameworks.

Our experiments show that social context can help in
multi-target tracking and head pose estimation on real-
world datasets. Of particular interest, social grouping pro-
vides a natural high-order cue for the single-camera multi-
target tracking problem, while existing approaches usually
depend on complex solvers to go beyond single-order
association. Furthermore, social grouping is also an output
of the complete system. Our model produces results that
are comparative to or better than state-of-art methods on
benchmark datasets (see Tbl. 1) on all three tasks (tracking,
head pose estimation, and group discovery), though our
model employs only simple motion and visual features.

Preliminary pieces of this work described the coupling of
social grouping with single-camera [36] and multi-camera
tracking [37]. In this paper, we also include head pose esti-
mation and provide a unified view. In addition, we provide
more comprehensive experimental results, including group
discovery performance.

2 RELATED WORK
Head pose estimation, group discovery, and especially
multi-target tracking, have been extensively researched in
the    computer vision community. We focus on the literature 
that is most related to our work.
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Camera A Camera B 

Frame 27 Frame 196 

Fig. 1: (Left) Social grouping behavior not only generally exists in one scene, but also usually persists (with the same
group members) across wide areas. (Right) Given head images alone, it is sometimes difficult for human beings to
correctly identify head pose directions in challenging scenarios. Social context provides strong evidence for this difficult
problem.
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Fig. 2: (Left) Motion dependency problem for order-one
association methods [48]: though τ1 − τ2 and τ2 − τ3 can
be reasonably pairwise linked, the full trajectory is not
probable. (Middle, Right) Social context from τ4 gives
strong evidence to disambiguate the dependency among
tracks, indicating τ1 − τ2 − τ3 is probable (middle) or not
(right).

Single-camera multi-target tracking. Multi-target track-
ing is a key step in many computer vision tasks, in-
cluding visual surveillance, activity recognition, and scene
understanding. Time-critical approaches usually use particle
filtering algorithms for state estimation [51]. However, it is
very difficult for such systems to handle long-term occlu-
sions and detection failures. Thus recently, data association-
based tracking (DAT, also known as the tracklet-linking
problem) has dominated the research community. With
the help of state-of-art tracklet extraction methods such
as human detector approaches [25], researchers look at
extended time periods and link conservatively extracted
tracklets (short tracks) to recover full tracks. Many focus on
how to obtain more reliable linking probabilities between
tracklets [25][23][21]. To effectively infer the best matching
given the affinity measurements among tracklets, different
optimization methods such as the Hungarian algorithm
[25][41], K-shortest path [4], MWIS [5], set-cover [46],
min-cost flow [6], approximate dynamic programming [34],
and continuous energy minimization [28] have been pro-
posed. Some of them are shown to be equivalent to each
other [19]. Importantly, these methods are mostly order-one
methods, meaning that they optimize only pairwise similar-
ities. This might lead to global inconsistencies. One typical
problem is the motion dependency problem described in
Fig. 2.

Yang et al. [48] employ a CRF model to mitigate the
motion dependency problem for single tracks. Butt and
Collins [6] use a relaxation to the min-cost network flow
framework to explore higher-order smoothness constraints
such as constant velocity. These models involve complex

solvers and still possess limitations as they only address
the motion dependency problem for single tracks: As shown
in Fig. 2, the likelihood of one track with sudden motion
change might depend on whether it is accompanied by a
group member with a similar trajectory. Our model, on
the other hand, models such scenarios by design, can be
built upon simple solvers, and naturally helps higher-order
tracking when coupling with social grouping information
(modeled as a global spatial-temporal clustering procedure).

Multi-camera multi-target tracking. Multi-camera sys-
tems are ubiquitous, and a reliable multi-camera tracking
system allows wide-area scene understanding. Researchers
typically employ spatial-temporal and appearance cues to
handover targets across cameras. For spatial-temporal in-
formation, Javed et al. [20] use a Parzen window density
estimator to jointly model the inter-camera travel time
intervals, locations of exit/entrances, and velocities of ob-
jects. Makris et al. [26] propose an unsupervised learning
method to validate the camera network model. In terms
of appearance similarity, Javed et al. [20] show that the
Brightness Transfer Function (BTF) between cameras lies
in a low dimensional subspace and proposes a method
to learn them with labeled correspondences. A cumulative
brightness transfer function (CBTF) is proposed by Prosser
et al. [35] for mapping color between cameras using sparse
training set. Kuo et al. [22] use Multiple Instance Learning
(MIL) to learn a discriminative appearance affinity model
online. The work by Orazio et al. [15] evaluates several
BTFs and shows that they demonstrate similar behaviors
and limitations. Our work, on the other hand, is the first
to explore social grouping for the multi-camera tracking
problem, which is more robust to changes in camera
characteristics, viewpoints, and illumination conditions.

Head pose estimation. Head pose and gaze estimation
is a long-studied area in computer vision and human
computer interaction (HCI). It enables various applications
such as human attention tracking and area or object of
focus detection [27][1]. Most work focuses on head image
classification where images possess reasonable resolutions
and face landmarks are visible. Murphy-Chutorian and
Trivedi [30] give an excellent review on diverse approaches
towards this problem. Recent advances in this area include
using part-based model [53]. In this work, we focus on
head pose estimation in the common high-angle surveil-
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lance video, also known as head direction estimation [10]
and coarse gaze estimation [3]. Compared to traditional
pose estimation work, the visual features of head images
are usually very weak considering their small sizes, thus
methods requiring face landmarks are not applicable. This
problem is usually modeled as a regression problem (though
discretized classes sometimes serve as an intermediate step,
due to the ease of dealing with discrete labels over real-
valued angles [10] [38]. Our work follows this approach),
where angle difference between prediction and annotation,
instead of classification accuracy, is measured, because of
the difficulty of accurate class labeling [13] and the contigu-
ity of nearby classes/angles in the feature space. Most work
still focuses on feature extraction and estimation based
on head images alone: Robertson and Reid [38] explore
skin color feature. Tosato et al. [44] explore covariance
features. The histogram of gradient (HoG) [12] is popular
recently [3][10]. Support Vector Machine (SVM), SVM
Regressor, Neural Networks, Decision Trees, and Nearest
Neighbor classifiers are among classifiers/regressors ap-
plied [44][38][31]. The recent representative work by Ben-
fold and Reid [3] employs structured learning, proposing
a CRF for head pose estimation. Chamveha et al. [9]
employ spectral clustering for scene adaptation. Chen and
Odobez [10] couple head direction estimation with body
pose in a general kernel learning framework. However, all
these existing work only consider individuals. We consider
general social tendency and repellence beyond individuals.

Group discovery. Social discovery has also drawn much
attention in the computer vision community recently
[47][18][8][40]. Ge et al. [18] infer social groups given
a tracking result. By contrast, we perform grouping and
tracking jointly. Chamveha et al. [8] use attention cue to
help discovering groups, while we perform grouping first
to aid head pose estimation. This is because we note that
in challenging scenarios, head pose estimation can be more
difficult than group discovery (Ge et al. [18] also note that
trajectory information alone is enough to yield substantial
agreement with human for the grouping task).

Socially-aware computer vision. Social context has been
explored in a number of computer vision problems. For
tracking, Pirsiavash et al. [32] proposed a more effective
dynamic model based on social information, Pirsiavash et
al. [33] and Yamaguchi et al. [47] infer grouping for better
trajectory prediction and behavior prediction respectively.
Bazzani et al. [2] focuses on tracking groups and Chen et
al. [11] considers local group consistency. Ours is the first
to consider social grouping context for the data association-
based multi-target tracking and head pose estimation prob-
lem.

3 SOCIAL GROUPING FOR MULTI-TARGET
TRACKING AND HEAD POSE ESTIMATION

We first introduce our notation and the probabilistic formu-
lation of utilizing social grouping for multi-target tracking
and head pose estimation as two maximum a posteriori
(MAP) problems.

3.1 Notation
The input of our system is a set of n tracklets (possibly
including false alarms) τ = {τ1, τ2, . . . , τn} within a time
interval [0, T ], extracted by methods described in Sec. 6.2.
Each tracklet τi is a sequence of short descriptions of a
single target across the time interval [tstarti , tfinishi ]. Such
descriptions include the position and size of target (for
the tracking problem), and the position and size of the
pedestrian head (for the head pose estimation problem).
In particular we let ai(t) be the camera (discrete camera
labels) and li(t) be the position (discrete pixel coordinates
in the image) of τi at time t. We abuse li(t) to denote both
pedestrian and head positions.

The task of multi-target tracking is to determine which
tracklets correspond to the same target, which can be
represented as a binary correspondence matrix φ:

φi,j =

{
1 if tracklet j immediately follows tracklet i,
0 otherwise,

(1)
with the added constraints that

∑
j φi,j = 1 and

∑
i φi,j =

1, indicating each tracklet should only follow and be
followed by one other tracklet (except for the first and last
tracklets of each track, addressed by virtual starting and
ending tracklets in Sec. 4.4.1). We let Φ be the set of valid
correspondence matrices.

For social grouping evaluation, we model it as a clus-
tering problem and assume people form K groups, where
K is unknown. Within each group, there is a group mean
trajectory (a sequence of image coordinates) Gk, with G
= {G1, G2, . . . , GK}. ψ denotes a binary social grouping
assignment matrix:

ψi,k =

{
1 if tracklet i is assigned to group k,
0 otherwise.

(2)

Again there is an added constraint that
∑
k ψi,k = 1 and

we let Ψ be the set of valid social grouping matrixes.
For group head pose estimation, we will process each

group independently at every time point so we drop the
time stamp here. Let C denote the number of individuals
in a group, Y denote the head directions of everyone in the
group, Υ denote the head directions of all head images in
the scene, X denote any existing unary evidence for indi-
viduals (such as image values or walking direction; there
are M such features), and L denote the pedestrians’ head
locations. Let yj and lj be the head direction and location
of the jth person, and xij be the ith unary evidence for
the jth person. Thus Y = {y1, . . . , yC}, L = {l1, . . . , lC},
Xi = {xi1, . . . , xiC}, and X = {X1, . . . , XM}. Informa-
tion of X and L can be extracted from tracklet descriptions.

3.2 The Probabilistic Model Formulation
The inference of tracking, group discovery, and head pose
estimation given inputs can be modeled as two maximum
a posteriori (MAP) problems:

(φ∗, ψ∗, G∗) = arg max
φ∈Φ,ψ∈Ψ,G

P (φ, ψ,G|τ) (3)
E-4
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and
Υ∗ = arg max

Υ
P (Υ|φ, ψ,G, τ). (4)

In our work, the input to the second problem is the output of
the first problem. Thus a single forward filtering of these
two steps would output all desired information (tracking,
group discovery, head pose estimation).

4 COUPLING SOCIAL GROUPING WITH
MULTI-TARGET TRACKING

We model the first MAP problem, P (φ, ψ,G|τ), as

P (φ, ψ,G|τ) ∝ P (φ, ψ,G, τ)

= P (G) P (τ, ψ|G) P (φ|τ, ψ,G)

= P (G) P (τ, ψ|G) P (φ|τ, ψ),

(5)

assuming group trajectories do not affect tracklet linking
given grouping assignments. Next we explain each compo-
nent of this model and the optimization algorithm.

4.1 Social Grouping as K-means Clustering

P (τ, ψ|G) is the data likelihood function of the probabilis-
tic interpretation of clustering algorithms such as K-means
clustering. We have

P (τ, ψ|G) ∝
∏

i,k|ψik=1

P (τi|Gk), (6)

assuming trajectories for each individual are independent
from each other given group mean trajectories (a similar as-
sumption is made in general K-means clustering). P (τi|Gk)
is the likelihood that tracklet i comes from group k, which
we decompose across time as

P (τi|Gk) =

tfinish
i∏

t=tstart
i

P (ai(t)|Gk) P (li(t)|ai(t), Gk). (7)

P (ai(t)|Gk) is the probability that group k appears at
camera ai(t), a parameter of the model for group k which
we denote as bk,a(t). P (li(t)|ai(t), Gk) is the probability
that at time t, a member of the group in camera ai(t) will
appear at position li(t), which we model as a Gaussian
centered around the mean uk,a(t), the position for group k
in camera a at time t, also a parameter of the model for
group k. We use a fixed variance for all such Gaussians.

Notice that here we provide a general formulation for the
multi-camera scenario. When it is the single-camera case,
Eq. 7 can be significantly simplified (P (ai(t)|Gk) can be
dropped).

4.2 Socially Constrained Multi-target Tracking

P (φ|τ, ψ) measures the probability of tracklet linking (or
track handover in the multi-camera case) given the social
group information. Compared to traditional tracking meth-
ods, this adds a group constraint that if two tracklets are

linked (they are the same person), they belong to the same
group (one group per person):

P (φ|τ, ψ) =
∏

i|∀m,φm,i=0

Pinit(τi)
∏

j|∀m,φj,m=0

Pterm(τj)

×
∏

i,j|φi,j=1

{
Plink(i, j) if ∀k, ψi,k = ψj,k,
0 otherwise.

(8)

where Pinit(τi) is the likelihood of τi being an initial
tracklet, and Pterm(τj) the likelihood of τj being the last
tracklet. Plink(i, j) is the likelihood that tracklet j is the
first instance following tracklet i. These probabilities are
the affinity model; any standard cues from the literature
can be used (see Sec. 6.3).

4.3 A Simple Social Group Model
We model the probability of social groups as

P (G) ∝ e−κ|G|, (9)

penalizing large numbers of social groups to avoid over-
fitting (such as placing each person in a separate group).
Note that other heuristics are also applicable. Our choice
is intuitive and results in a simple linear penalty in the
optimization space, with its effectiveness validated in ex-
periments.

4.4 Joint Optimization of Social Grouping and
Multi-target Tracking
This section introduces the joint optimization of tracking
and social grouping (P (G), P (τ, ψ|G), and P (φ|τ, ψ) in
Eq. 5) as a constrained nonlinear optimization framework,
which we call SGB (Social Grouping Behavior) algorithm.

We first reformulate the joint optimization of social
grouping and multi-target tracking in the negative log space
and achieve clean formulations. Then we introduce an
effective optimization framework that can result in simple
existing methods.

4.4.1 Optimization Reformulation
We perform the joint optimization of tracking and social
grouping in the negative log-likelihood space (a mini-
mization problem). Ignoring an additive constant from the
proportionality in Eq. 9,

− lnP (G) = κ|G|. (10)

This term is in charge of selecting the number of groups
and serves as the outer loop of optimization. Ignoring a
similar additive constant, for P (τ, ψ|G) (Eq. 6), we have
− lnP (τ, ψ|G) =

∑
i,k|ψik=1D(τi, Gk) =

∑

i,k|ψik=1

tfinish
i∑

t=tstart
i

−α ln bk,ai(t)(t) + β
∣∣li(t)− uk,ai(t)(t))

∣∣2

(11)
from Eq. 7 where α and β are weights relating to the vari-
ance of the Gaussian. For simplicity, we define D(τi, Gk)

E-5
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to be the “distance” of tracklet i from group k as above. In
the single-camera case, the distribution bk,a(t) is degenerate
and drops out of the equation.
P (φ|τ, ψ) (Eq. 8) can be transformed to an assignment

problem by defining a 2n× 2n tracklet linking matrix

H =

(
H link
n×n Hterm

n×n
Hinit
n×n ∞n×n

)
(12)

with H link
i,j = − lnPlink(i, j), Hinit

i,i = − lnPinit(τi),
Hterm
i,i = − lnPterm(τi) and infinity (− ln 0) elsewhere

(including all diagonal elements). The virtual tracklets are
introduced to handle track initializations and terminations.
Eq. 8 is 0 if any assignments violate the constraint that
linked tracklets must be in the same social group. Therefore,
if we add this as a constraint: ∀i, j, k φi,j(ψi,k−ψj,k) = 0,
the resulting equation can be written in terms of H:

− lnP (φ|τ, ψ) =
∑

i,j

φi,jHi,j (13)

Our optimization’s outer loop tries different numbers of
social groups (P (G)). Inside (optimizing P (τ, ψ|G) and
P (φ|τ, ψ)), we can drop Eq. 10 and minimize the sum of
Eq. 13 and Eq. 11 with the above constraint:

min
φ∈Φ,ψ∈Ψ,G

∑

i,j

φi,jHi,j +
∑

i,k

ψi,kD(τi, Gk)

s.t. ∀i, j, k φi,j(ψi,k − ψj,k) = 0.

(14)

We call Eq. 14 the primal problem.

4.4.2 A Two-stage Alternating Minimization Algorithm
We use a two-stage iterative alternative optimization al-
gorithm to solve the constrained nonlinear optimization
problem in Eq. 14. The Lagrangian is

L(φ, ψ,G, µ) =
∑

i,j

φi,jHi,j +
∑

i,k

ψi,kD(τi, Gk)

+
∑

i,j,k

µi,j,kφi,j(ψi,k − ψj,k),
(15)

where the µs are the Lagrange multipliers. The dual of this
problem is

max
µ

q(µ)

where q(µ) = min
φ∈Φ,ψ∈Ψ,G

L(φ, ψ,G, µ).
(16)

The resulting correspondence φ of the optimization is the
output of the method. For a fixed µ, let

(φµ, ψµ, Gµ) = arg min
φ∈Φ,ψ∈Ψ,G

L(φ, ψ,G, µ). (17)

To solve Eq. 16, we use a quasi-Newton strategy with
limited-memory BFGS updates and Wolfe line search con-
ditions guided by the subgradient [39]:

∂q

∂µi,j,k

∣∣∣∣
µ

= φµi,j(ψ
µ
i,k − ψ

µ
j,k). (18)

To calculate the subgradient, we use a two-stage block
coordinate-minimization algorithm to solve Eq. 17. The first

stage minimizes over φ (the tracklet correspondence result)
from Eq. 15 with ψ and G fixed:

φµ = arg min
φ∈Φ

∑

i,j

φi,j [Hi,j +
∑

k

µi,j,k(ψi,k − ψj,k)].

(19)

This amounts to adding a penalty term to the matrix scores
(compare with Eq. 13). So Eq. 19 is a standard assignment
problem and can be efficiently solved by the Hungarian
algorithm (or any algorithm designed for tracklet linking).

The second stage minimizes Eq. 15 over ψ and G, with
φ fixed: (ψµ, Gµ) =

arg min
ψ∈Ψ,G

∑

i,k

ψi,k[D(τi, Gk) +
∑

j

(µi,j,kφi,j − µj,i,kφj,i)].

(20)

This amounts to a standard K-means clustering problem. If
the “centers,” G, are fixed, the assignments, ψ, are made to
minimize the augmented distance. When the assignments
are fixed, the centers can be placed to minimize their dis-
tances to the captured points. Several initial group assign-
ments are tried, as K-means converges to local minimum.
The output of the one with the minimum value for Eq. 16
for one specific |G| is maintained. At the end, we add the
linear penalty of |G| indicated by Eq. 10 and the outer loop
(over |G|) selects the solution with the minimal negative
log-likelihood score. See Alg. 1 for details.

Our method can be viewed as approximate max-product
on the graph G − ψ − φ (in which the constraint forms
the potential between ψ and φ). Direct variable elimi-
nation does not work, as it would require transmitting
a distribution over all tracklet-tracklet-group triples. Dual
decomposition [42] also results from a Lagrangian formu-
lation, but is different from ours. We employ combinatorial
optimization methods inside of max-product (our K-means
and Hungarian algorithms) which has been explored in
other max-product formulations [16].

Algorithm 1: SGB Algorithm
Data: Tracklet set τ
Result: Tracking φFinal, Grouping ψFinal

1 for K ← 1 to Km do
2 for i← 1 to N do
3 µ← 0, φK,i ← 0
4 initialize ψK,i and GK,i randomly
5 while Not local maximum for Eq. 16 do
6 µ← subgradient ascent: Eqs. 17 and 18
7 while φK,i or ψK,i changes do
8 Update φK,i: Eq. 19
9 while ψK,i changes do

10 Update ψK,i: Eq. 20
11 Update GK,i according to ψK,i

12 CostK,i ← primal cost (φK,i, ψK,i, GK,i):
Eq. 14

13 (K∗, i∗)← arg minK,i Cost
K,i + βK

14 φFinal ← φK
∗,i∗ , ψFinal ← ψK

∗,i∗
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5 SOCIALLY-AWARE HEAD POSE ESTIMA-
TION

This section introduces the estimation of head poses given
grouping information and tracking result (P (Υ|φ, ψ,G, τ)).
We formulate this problem as inference in a Conditional
Random Field (CRF), discuss how we build the social
interaction factor, and provide exact convex learning and
inference procedures.

5.1 A Conditional Random Field Formulation
P (Υ|φ, ψ,G, τ) is the probability of head pose labeling in
the video. In this work, we model the head poses of a group
as a generative graph labeling1 problem for each group at
each time instance:

P (Υ|φ, ψ,G, τ) = P (Υ|φ, ψ, τ) =
∏

k

P (Yk|Xk, Lk),

(21)
assuming group mean trajectories do not affect head pose
estimation given grouping assignments. Concentrating on
a single group (one P (Yk|Xk, Lk) term), we drop the k
subscript. By assuming a uniform prior on head poses, each
evidence source is independent given the head pose, and
each unary evidence (x) only depends on the person’s head
pose (y), we have

P (Y |X,L) =
1

Z
P (Y,L)

∏

i

∏

j

P (yj |xij), (22)

with Z being a normalization constant. We model pairwise
social tendencies in the group for P (Y,L). This problem
can be modeled as a CRF as shown in Fig. 3. By using a
log-linear model and ignoring the normalization constant,
we get:

lnP (Y |X,L) ∝
∑

i

〈
wi1,Λ

i
1(Xi, Y )

〉
+ 〈w2,Λ2(Y,L)〉

= 〈w,Λ(X,Y, L)〉 ,
(23)

where
Λi1(Xi, Y ) =

∑

j

λi1(xij , yj), (24)

and
Λ2(Y,L) =

∑

j1≺j2
λ2(yj1 , yj2 , lj1 , lj2). (25)

≺ is an ordering: we enumerate all unique pairs in a group.
The subscript in λ2 denotes a pairwise term. λ2(·) is the
feature vector for a pair of people that jointly models head
pose labeling Y and locations L, with details described
in Sec. 5.2, w2 is the weight vector for these features,
and 〈·, ·〉 is the dot product. Evidence from unary factors
(i.e. λ1 and Λ1) is represented similarly. Λ(X,Y, L) is the
feature vector composed of features from Λ2 and Λi1 for all
i (from 1 to M ). w is a vector of parameters to be estimated
(composed of the weights from w2 and wi1 for all i). This
formulation allows exact convex learning and inference.

1. We use label and head pose direction interchangeably.
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Fig. 3: A factor graph showing how variables and cliques
interact in the CRF. A graph of three head images and
only two unary features are shown for simplicity. If there
are more people in a group or more unary features, this
graph can be straight-forwardly augmented.
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α 
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α α=0 

β 
β 

β 

Fig. 4: Structure-aware head pose angle difference. Nodes
are head images and dark blue arrows are head directions.
Relative positions within group members are considered.
The difference is simply β−α. A positive number implies
social attraction.

5.2 Building Group Interaction Models
We study the pairwise head pose interaction patterns in
social groups for Eq. 25, which is key for using social
grouping information to improve head pose estimation
performance. We define the structure-aware head pose angle
difference as illustrated in Fig. 4. We will use SA(j1, j2),
short for SA(yj1 , yj2 , lj1 , lj2), to denote this angle between
the head directions of person j1 and j2. This angle takes
into account the relative positions of the two people. Using
structure information allows us to differentiate between
social attraction and divergence when the absolute angle
difference is the same. Given social groups, we collect
such angle differences from only 200 pedestrian pairs from
training data (the model data), identify two modes by
thresholding velocity (a dataset dependent parameter in
pixel/frames similar to that in Chamveha et al. [9]), and
build the histograms shown in Fig. 5.

The resulting histograms are intuitive: (1) As shown in
Fig. 5 (left), when people walk, they tend to look in the
same direction (where they are heading generally or where
an object of interest is), but there is more social attraction
than divergence, as people tend to make eye contact with
each other. We choose to model it with two exponential
distributions on both sides of zero degrees. (2) As shown
in Fig. 5 (right), when people are relatively stationary, they
tend to look directly at each other (angle difference around
+180 degree), or be attracted to common objects of interest
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Fig. 5: Two social interaction modes with structure-aware
head direction angle difference. Left: dynamical social
interaction mode, fitted with two exponentials on either side
of 0 degree. Right: static social interaction mode, fitted with
two Gaussians on either side of 90 degrees. The specific
distributions (exponential and Gaussian) are chosen due to
their expressive power in this application and simplicity to
express in the negative log space. The fitted distributions are
rescaled and are for illustration only; their actual parameters
are learned from training data.

(around 0 degrees, for example, when people scan shop
windows). Though this is arguably a mixture of Gaussian,
we model it with two Gaussians, separating at 90 degrees,
for simplicity. The goal of learning is then to learn the rates
of the exponentials and variances of Gaussians (feature
weights in the negative log space).

These general forms can be converted into features so
that the weights in Eq. 25 correspond to the rates and
variances above. Given the group head pose interaction
models, the feature vector of dynamical interaction mode
for two head images (two exponentials on either side of 0
degree) is λmoving2 (yj1 , yj2 , lj1 , lj2) =

[
|SA(j1, j2)| I[SA(j1, j2) > 0]
|SA(j1, j2)| I[SA(j1, j2) < 0]

]
. (26)

I[·] is the indicator function indicating the submode of
social interaction for the pair j1 − j2. If the mode is off,
the corresponding feature is 0.

The feature vector of the static interaction mode is
λstatic2 (yj1 , yj2 , lj1 , lj2) =

[
(SA(j1, j2)− 180)2 I[SA(j1, j2) > 90]

(SA(j1, j2))2 I[SA(j1, j2) < 90]

]
. (27)

Similar to the feature vector in Eq. 26, these two features
indicate which Gaussian submode is active and the corre-
sponding feature value.

The dynamical interaction feature and static interaction
feature can be unified as Λ2(yj1 , yj2 , lj1 , lj2) =

[
λmoving2 (yj1 , yj2 , lj1 , lj2) I[moving]
λstatic2 (yj1 , yj2 , lj1 , lj2) I[not moving]

]
. (28)

For example, if people are moving (estimated from tracking
result), the dynamical interaction (moving) mode is on, and
all features in λstatic2 become 0.

5.3 CRF Parameter Learning
Our CRF modeling allows exact convex discriminative
learning. Note that we are interested in a regression prob-
lem, as the loss function models angle difference. However,
using discrete and fine (32 bins) class labels make exact
learning possible.

Let X(m) denote all unary features, L(m) denote head lo-
cations, and Y (m) denote the ground-truth labeling of group
instance m. Further, let Λ(m)(Y ) = Λ(X(m), Y, L(m));
thus Λ(m)(Y (m)) = Λ(X(m), Y (m), L(m)) indicates a
ground-truth feature-label configuration from training data.
We conduct discriminative learning [43] of P (Y |X,L) in
the negative log space. Given N training examples, each of
which is a graph labeling and related features, the objective
function of training is g(w) =

1

N

N∑

m=1

ln
∑

Y

(
P (Y |X(m), L(m))

P (Y (m)|X(m), L(m))
el(Y

(m);Y )

)
+
γ

2
||w||2,

(29)
where l(·; ·) is the loss function for a group:

l(Y (m);Y ) =
∑

j

l
′
(y

(m)
j ; yj). (30)

l
′
(·; ·) ∈ [0, 180] is the absolute difference between two di-

rections. γ2 ||w||2 is a regularization term to avoid overfitting
(γ is achieved via cross-validation in training).

After we apply Eq. 23, the objective function becomes

g(w) =
1

N

N∑

m=1

ln
∑

Y

Γ(m)(Y ) +
γ

2
||w||2 (31)

where Γ(m)(Y ) = el(Y
(m);Y )−〈w,Λ(m)(Y (m))−Λ(m)(Y )〉,

(32)

Eq. 31 is convex with gradient

γw − 1

N

N∑

k=1

∑
Y Γ(k)(Y )(Λ(k)(Y (k))− Λ(k)(Y ))∑

Y Γ(k)(Y )
. (33)

Since the objective function and gradient are explicit, mini-
mization can be done exactly with any convex programming
package, and we again use the one from Schmidt [39].

The complexity is O(QC), where Q is the number of
quantized head pose directions and C is the number of
people in a group. Sociology research [29] shows that in
natural scenes, people generally form groups of fewer than
6 people. This is also validated in the dataset we use. If the
scene is really crowded (such as a Marathon event), large
groups can be divided into smaller ones, or our model is
not suitable since social interaction can be quite noisy in
such cases. Running time is discussed in Sec. 7.5.

5.4 Head Pose Estimation Inference
Given model parameters (feature weights learned in the pre-
vious section), we perform head pose estimation inference
by outputting

max
Y
〈w,Λ(X,Y, L)〉 , (34)
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which is the maximization of the log of P (Y |X,L).
We use a brute-force approach to try all combinations of

head directions for exact inference. The complexity is the
same as learning, with tractability discussed above.

6 DETAILS ON LOWER-LEVEL TASKS

Our framework is general in that it can be built upon dif-
ferent choices of lower-level components, such as tracklet
extraction methods, features to build the tracklet affinity
matrix, and unary features used for head pose estimation.
We give details of our choices for implementation.

6.1 Parameter Estimation for Tracking
Parameters for tracking and group discovery include the
feature weights for tracking, and κ for group number
selection. They are estimated by a coarse grid search in the
first time window in each dataset, and are fixed afterwards.
In practice, feature weights are first selected for tracking
without social grouping. Then κ is selected by a simple
binary search after adding the social grouping term.

6.2 Tracklet Extraction
Our framework only requires the tracklet extraction method
employed to be reliable (commonly assumed in the liter-
ature). Namely there should be few within tracklet iden-
tity switches. In order to perform comparative experimen-
tal evaluation, when tracklets from authors of published
work are available, we use them. Otherwise we build
our tracklet extraction framework based on human detec-
tion responses, combining nearest neighbor association and
template matching to extract conservative tracklets. Given
detection responses, we link detection response pairs only
at consecutive frames which have very similar color, size
and position. Additionally, the newly added detection must
be similar to the first detection in the tracklet, thus avoiding
within-tracklet ID switches caused by gradual changes. We
find this simple strategy produces almost zero ID switches
within tracklets and good recall performance.

6.3 Basic Affinity Model
Social grouping behavior regularizes the tracking solution
and alleviates the need for a highly tuned affinity model.
However, the basic affinity model must produce reasonable
measurements, Hi,j . For both single-camera and multi-
camera tracking, we build the basic affinity model using
appearance (app) cues and spatial-temporal (st, usually
referred as motion in single-camera tracking) cues:

− lnPlink(i, j) = − ln pappi,j − ln psti,j . (35)

For single-camera tracking, we use the Bhattacharyya
distance between the average color histograms within the
tracklets [41]. We employ the HSV color space and get
a 24-element feature vector after concatenating 8 bins for
each channel. The motion model is a simple linear motion
smoothness measure [25].

For multi-camera tracking, we use the BTF model and
the Parzen window technique for spatial-temporal informa-
tion in Javed et al. [20]. Pinit(Ti) and Pterm(Ti) are set to
be a single constant (from training) for simplicity. There is
also the time constraint that tracklet linking is only possible
when tracklet j takes place later than tracklet i and within
a maximum allowed frame gap tmax.

6.4 Spatial-temporal K-means Clustering
We describe how to implement the two steps of K-means
clustering: group update (with group assignments given)
and tracklet assignment (with group parameters given).

Recall that we modeled the group mean trajectory for
Gk as, at each time t, a distribution over which camera
a member of the group appears in, bk,·(t), and a mean
position within each camera a that a group member would
appear, uk,a(t). Track assignment (finding ψ given a fixed
G) is simple: for each tracklet τi, compute D(τi, Gk) from
Eq. 11 for each group Gk and select the one that minimizes
the negative log-likelihood.

For the update of Gk with the assignment ψ fixed, we
must find the parameter assignments to bk,· and uk,· that
maximize the likelihood. The log-likelihood is a sum across
time, so the maximization can be done independently at
each time point. bk,a(t) is a multinomial parameter and
therefore its maximum likelihood estimate is proportional
to the number of tracklets that are assigned to group k at
time t in camera a.
uk,a(t) is the conditional mean for group k at time t in

camera a. Therefore, its maximum likelihood parameter is
the average position of all tracks assigned to group k at
time t in camera a. If at any point there are no tracklets
for group k and camera a, we use linear interpolation or
extrapolation to generate a mean. If no tracklets in camera
a are ever assigned to group k, we place uk,a(t) in the
middle of the image for all t.

6.5 Unary Terms in CRF
Features from existing work can be used to construct unary
features in our head pose estimation framework. We use
two unary features. First, walking direction is shown to be
effective in some datasets. As proposed by Benfold and
Reid [3] and validated in our work, head pose direction is
distributed approximately as a Gaussian with the walking
direction as the mean. Thus in our negative log-likelihood
framework, the unary feature of walking direction is

λwalking1 (yj , x
walking
j ) = (yj − xwalkingj )2. (36)

We also build a two-level HoG vector to model visual
features of head images, following Chen and Odobez [10].
Then we train a multi-class SVM with probability estimates
[45]. Besides predicting labels, this allows us to estimate
the probability of a visual vector belonging to each class.
In this way, we have

λHoG1 (yj , x
HoG
j ) = − logP (yj |xHoGj ). (37)

where − logP (yj |xHoGj ) can be directly obtained from the
output of an SVM classifier with probability estimates.
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TABLE 1: Datasets used for each task in the experiments.
Task Datasets
Multi-target Tracking PETS 2009, CAVIAR, TUD
Multi-camera Tracking VideoWeb
Head Pose Estimation PETS 2009, CAVIAR, TownCentre
Group Discovery PETS 2009, PSUHub, TownCentre

TABLE 2: Comparison of the tracking result on the
CAVIAR dataset: 75 ground truth (GT) tracks.

Method Recall Prec. MT ML Frag IDS
Particle filter 55.7% 60.4% 53.3% 10.7% 15 19
Basic affinity 81.1% 82.7% 77.3% 6.7% 9 12
MCMC[41] 84.5% 90.7% 84.0% 4.0% 6 8
SBM[52] − − 85.3% 4.0% 7 7
Our SGB 90.1% 95.1% 88.0% 2.6% 5 6

7 EXPERIMENT

We conduct comparative experiments with recent related
methods on publicly available datasets for tracking, head
pose estimation, and group discovery. Experimental results
clearly show the benefits of utilizing social grouping con-
text. The datasets we use is summarized in Tbl. 1

7.1 Single-camera Tracking Evaluation

We first evaluate how modeling social grouping behavior
helps to improve single-camera multi-person tracking on
the CAVIAR Test Case Scenarios dataset [7]. We use the
videos selected by Song et al. [41], consisting of 12,308
frames for about 500 seconds. We retrieve tracklets from
the same authors and use the same evaluation metrics by
Li et al. [25]: the number of ground truth trajectories (GT),
mostly tracked trajectories (MT), mostly lost trajectories
(ML), fragments (Frag), ID switches (IDS), and recall
and precision for detections. A comparison with several
published results under the same configuration is shown
in Tbl. 2. Our basic affinity model achieves reasonable
results, while better results than competing methods can
be achieved by employing our social grouping model with
the simple affinity model.

Fig. 6 shows representative cases of the strong grouping
information that allows us to improve tracking performance.

We further compare our model on the popular PETS
2009 and TUD-Stadtmitte datasets against a number of
state-of-the-art methods using the same evaluation metrics.
We obtained the publicly available detection results, ground
truth data, and automatic evaluation tool from the authors
of [50]. In addition to the former metrics, we also report the
false alarm rate (FAF) for detections, and partially tracked
trajectory ratio (PT) from the evaluation tool. In Tbl. 3
and Tbl. 4 we can see that our model outperforms several
state-of-art methods, even though our model is built upon
a simple basic affinity model. On the other hand, compet-
ing methods either solve complex optimization problems
(Milan et al. [28] introduce six types of jumps in the
optimization space) or build sophisticated affinity models
(Kuo and Nevatia [21] use appearance features from the
person identification literature). Of particular interest, for
the PETS 2009 dataset, pedestrians were asked to travel
across the scene multiple times. Even in such a scenario
they formed groups and made social interactions, which

Fig. 7: Topology of the cameras in the experiments.

is utilized by our model to help tracking. An example is
shown in Fig. 8.

7.2 Multi-camera Tracking Evaluation

We test our method using two sets of videos on the pub-
licly available VideoWeb dataset [14]. We choose Cam27,
Cam20, Cam36 and part of Cam21 (indexed by 1–4)
to establish the desired non-overlapping topology, shown
in Fig. 7. Multi-camera tracking in this setting is very
challenging for the following reasons. (1) We use 4 cam-
eras, unlike most prior work that use 2–3. (2) This is an
outdoor dataset with a cluttered environment and severe
within-camera illumination change, which makes traditional
methods that establish one single transformation between
each camera pairs, such as BTFs, much less reliable.
(3) Since this dataset is mainly designed for complex real-
world activity recognition, there exist heavy interactions
among individuals, unlike “designed” tracking datasets (for
example the one in the work of Javed et el. [20]).

We compare our proposed multi-camera social grouping
behavior tracking (MulSGB) to directly using the Bhat-
tacharyya distance between RGB color histograms, Parzen
window estimation for spatial-temporal information and the
original color histogram for appearance (Parzen Window)
and the BTF plus Parzen window estimation framework
(Parzen Window + BTF) in the work of Javed et al. [20].

We gather 9 videos using all 4 cameras and 4 videos with
camera 1–3. We use 5 videos from the first set for training
and all the other videos for testing (note the second set
of videos contains a subset of cameras of the first set so
no additional training is needed). All other videos in the
dataset either had no inter-camera motion or were missing
data for more cameras. The data used have roughly 40,000
frames (25fps) for each of the four cameras for training and
80,000 frames for each camera for testing. For detection,
we use a state-of-art pedestrian detector [17] to get de-
tection responses and generate reliable intra-camera tracks
using our introduced single-camera tracking framework.
The same set of tracks are used for all comparing methods.
We hand-labeled ground truth and measure the percentage
of correctly linked pairs for the eight testing scenes (which
consist of 244 single-camera tracks in total). Fig. 9 and
Fig. 10 show the results for each set of videos.

We have the following observations. (1) Given the
poor color histogram result, especially for the four-camera
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Frame 890 Frame 950 Frame 980 Frame 1010
(a) Even under heavy occlusions and interactions, the usual identity switch of 2 and 10 is avoided.

Frame 510 Frame 1245 Frame 1650 Frame 1682
(b) Long-term tracking of the couple (20,21) is possible under challenging conditions:

small target, illumination change (frame 510), and false detection (frame 1245).
Fig. 6: Some representative tracking results for CAVIAR dataset.
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Though there are heavy interactions between 10 and 15, social context from 2 helps to recover an ID switch.

Fig. 8: One representative tracking result for PETS dataset.

TABLE 3: Comparison of the tracking result on the PETS 2009 dataset.
Method Recall Precision FAF GT MT PT ML Frag IDS
KSP [4] 83.8% 96.3% 0.160 23 73.9% 17.4% 8.7% 22 13
Energy Minimization [28] 92.4% 98.4% 0.070 23 91.3% 4.4% 4.4% 6 11
Online CRF [50] 93.0% 95.3% 0.268 19 89.5% 10.5% 0.0% 13 0
Nonlinear Motion [49] 91.8% 90.0% 0.053 19 89.5% 10.5% 0.0% 9 0
Our SGB model 97.2% 98.6% 0.077 19 94.7% 5.3% 0.0% 4 2

TABLE 4: Comparison of the tracking result on the TUD-Stadtmitte dataset.
Method Recall Precision FAF GT MT PT ML Frag IDS
KSP [4] 63.1% 79.2% 0.650 9 11.1% 77.8% 11.1% 15 5
Energy Minimization [28] 84.7% 86.7% 0.510 9 77.8% 22.2% 0.0% 3 4
PRIMPT [21] 81.0% 99.5% 0.028 10 60.0% 30.0% 10.0% 0 1
Online CRF [50] 87.0% 96.7% 0.184 10 70.0% 30.0% 0.0% 1 0
Our SGB model 95.2% 98.5% 0.085 10 90.0% 10.0% 0.0% 4 3
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Fig. 9: Percentage of correctly linked pairs on the four video
sequences with four cameras. The videos consist of 27, 5,
5 and 23 (60 in total) ground truth linked pairs respectively.
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Fig. 10: Percentage of correctly linked pairs on the four
video sequences with three cameras. The videos consist of
17, 24, 9 and 14 (64 in total) ground truth linked pairs
respectively.
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Frame 5809 (Cam 3) Frame 6222 (Cam 3) Frame 6295 (Cam 2) Frame 6689 (Cam 2)

Fig. 11: Example tracking result with our model, where G indicates group number. Because people form groups and
show proximity to group members, social grouping provides powerful contextual information to improve multi-camera
tracking. Other methods tend to identify a new person (Frame 6295 target 1) and output an identity switch (target 3 and
5) on this sequence, because traditional evidences are unreliable.

setting (demonstrating the difficulty of the dataset), the
overall performance is good, as our MulSGB model indeed
improves tracking performance over competing methods.
(2) The example in Fig. 11 shows a representative example
where social grouping helps tracking, while other meth-
ods fail under this challenging sequence. (3) Since our
social grouping model serves as a regularizer, the basic
affinity model upon which we built social grouping model
is sometimes a bottleneck. For example, we observe no
improvement upon the baseline model for two sequences
in Fig. 10. We observed that in such cases, although the
optimization usually heads toward a good solution, it could
not recover wrong links since the basic model provides very
unlikely handover possibility between the correct pairs. For
example, when the illumination condition changes between
the testing set and training set, the learned BTF may even
hurt the performance comparing to pure color histogram
comparison, as is the case for video1 in Fig. 10.

7.3 Head Pose Estimation Evaluation
We evaluate how social interaction improves head pose esti-
mation in challenging videos, using the TownCentre dataset
[3], CAVIAR, and PETS 2009. We use mean absolute angle
difference (MAAD) stated in degrees as the evaluation
metric, as is commonly done in related work. We quantized
head pose into 32 directions, which is finer than most
existing work (such as 8 directions [10][38]). This helps
alleviating errors from coarse quantization when comparing
angles. Competing methods that require discretization use
the same setting.

We compare our method with models using visual fea-
tures only (HoGSVM) and walking direction only (Walk-
ing). We also compare our method with a model with both
visual and motion features. We call this model the BR (Ben-
fold and Reid) setting [3]. Our implemented BR baseline
does not incorporate temporal information. However, the
resulting CRF can be solved exactly. We feel these two
factors largely compensate each other as we get compara-
ble results as those by Benfold and Reid [3]. Temporal
information might be incorporated in our framework if
approximate inference algorithms were applied. We also
compare with two state-of-the-art methods: Orozco et al.
[31] build a mean image for each class and represent each
image as a distance map to these references. We use our
own implementation with KL-Divergence as the distance

TABLE 5: Comparison of the head pose estimation results
on the TownCentre, CAVIAR and PETS 2009 dataset.
Numbers are reported on MAAD.

Method TownCentre CAVIAR PETS
HoGSVM 31.20 28.80 32.64
Walking 23.89 72.01 58.28

DisMap [31] 33.12 30.20 31.54
WARCO [44] 31.12 25.70 28.65
BR Setting [3] 22.87 27.00 31.85

Ours 21.83 24.65 28.78

measure (best reported measure in the paper). Tosato et
al. [44] design a new visual feature and have publicly
available implementation. Note that the small-sized head
images make the comparison to landmark detection based
work (e.g. [53]) impossible.

We use head images from people that are not in groups
to train the multi-class SVM. Note we only report results
for people identified in groups. For people that are not
identified in groups, our model would output exactly the
same result by using individual features alone. For the
TownCentre dataset, about 30% of the people are identified
in groups. For PETS 2009, over 40% of the people are in
social groups. For the CAVIAR dataset over 60% are in
groups.

We first use the TownCentre dataset to test our proposed
method. This dataset has been used in several recent papers.
It involves people traveling in a shopping mall. Though this
dataset is treated as high-resolution video in the tracking
literature, head images are small due to the high camera
angle. We use the result of head tracking from Benfold and
Reid [3] and use our spatial-temporal clustering procedure
in Sec. 6.4 to determine groups. We manually label head
directions for every 15 frames. Due to annotation differ-
ences, the angle differences are not directly comparable.
But the performance we get from our BR setting baseline
implementation is comparable to that of Benfold and Reid
[3], which reports an MAAD of 23.90.

We gather 270 pairs of head images for this dataset.
Whenever training is involved, 100 pairs are used for
training and the others are used for testing. Since cam-
era parameters are available for this dataset, we evaluate
performance on the ground-plane. The results for different
methods are shown in Tbl. 5.

As stated by Benfold and Reid [3], we also observe
that walking direction provides a very good baseline in
this dataset since most people are walking in the shopping
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Walking HoG HoG+Walking Social+HoG+Walking

(a) Our model provides finer head direction estimate even when walking direction is reliable.

(b) Our model helps to correct head direction estimations in social groups with multiple people.
Fig. 12: Representative head direction estimation results for TownCentre. Red lines indicate human-labeled head direction.

Walking HoG HoG+Walking Social+HoG+Walking

(a) Our model corrects head direction for small head images as people interact.

(b) One case that our model is not able to fully recover false estimations.
Fig. 13: Some representative head direction estimation result for CAVIAR dataset.

mall. It can generate a better result than using only visual
features. But even in such scenario, our model improves
upon the best non-social method. As people walk together,
their head directions tend to be attracted by other group
members. Using social information regularizes out outliers
that do not conform to such social constraints. Note that the
performance gain from our social model is as large as the
gain from combining two non-social information sources
(comparing to using walking direction alone). We show two
qualitative examples in Fig. 12.

We also compare performances on the CAVIAR dataset
and PETS 2009 dataset. We annotate 5 video sequences2

in CAVIAR and the entire PETS dataset at every 5 frames
for head locations and head direction manually to focus on
head pose estimation. For CAVIAR we gather 241 pairs of
data, 100 of which are used for training and the others
for testing. For PETS we gather 194 pairs of data and
use half of them for training. Note for these two datasets
we directly assign person ID and group ID based on our

2. FightChase, MeetSplit3rdGuy, FightOneManDown, MeetWalkTo-
gether1, FightRunAway1

tracking model. That is, we do not assume ground truth
identity or group member labeling and we evaluate head
pose estimation performance in the complete system.

Compared to the TownCentre dataset, head images in
these two datasets are of lower resolutions but possess lower
variance because there are fewer people. CAVIAR involves
more people standing still; the static mode of our social
interaction model is more frequently activated and walking
directions can be very noisy. People in PETS also show
more freedom while walking so walking direction is again
not as reliable as that in TownCentre. For these two datasets,
we evaluate performance on the image plane.

We summarize the results in Tbl. 5. The performance
gains by incorporating social context are more significant
on these two datasets. They are much larger than the gain
from combining the two non-social information sources
(comparing to using visual feature alone.) This is because
walking direction is often no longer a reliable feature
and visual features are still weak. Yet, when people are
relatively static, they tend to make more social contacts so
our model helps more. Also, when walking, pedestrians’
head direction severely deviates from walking direction,
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such deviations are usually motivated by group members
or objects of interest, which is modeled in our formulation.
We note that the reference-set based approach [31] does
not perform very well due to its classification (instead of
regression) formulation and the sparsity of training data.
Our model performs comparatively with or better than the
state-of-the-art method [44]. Some examples are shown in
Fig. 13. We also show a case where our social model
is not able to recover from false head pose estimations:
Fig. 13(b). This is because our social model can be viewed
as a regularizer, and it will not help much when the baseline
model provides very bad evidence (for example, assigning
very low probability to the true label).

7.4 Group Discovery Evaluation

Group discovery is provided by the group assignment
matrix of our model. The simple spatial-temporal clustering
approach is robust as a global consistency measure, while
existing methods typically use features such as velocity,
which can be unreliable with noisy detections or standing-
still people. We show that our group discovery component
can produce reasonable result compared to other designed
approaches. The fact that our group discovery model is
coupled with the tracking process (while other methods
typically assume and are built upon perfect tracking result)
makes our grouping approach more practical. When trajec-
tories are available, the spatial-temporal clustering approach
can be directly applied. We evaluate both cases.

Following Ge et al. [18], we use the following evaluation
method: Each pedestrian is coded into one of two cate-
gories: alone or in a group. This is called the dichotomous
coding scheme. A trichotomous coding scheme classifies
each pedestrian into alone, in a group of two, or in a group
of three or more. Match rate indicates the percentage of
persons that are classified correctly. Furthermore, to test the
statistical significance of the agreement between the human
annotations and the output of the algorithm, Cohen’s Kappa
test [24] is used. Kappa score ranges from −1 to 1, and
Landis and Koch [24] characterize values smaller than 0
as indicating no agreement and (0, 0.2] as slight, (0.2, 0.4]
as fair, (0.4, 0.6] as moderate, (0.6, 0.8] as substantial, and
(0.8, 1] as almost perfect agreement.

Since we are not aware of group discovery results or an-
notations on the datasets we conduct tracking experiments
on, or any available implementations of relating work, we
are not able to conduct comparative experiments on these
datasets. We thus annotate grouping in the PETS 2009
dataset. Our method produces 87% matching rate and a
κ value of 0.75 for both dichotomous and trichotomous
coding scheme (there are no trichotomous groups in the
ground truth.) 55 trajectories are identified in time windows
of 100 frames. (The same person in different time windows
are treated as different persons [18].) We can achieve
substantial agreement with human annotator on this dataset.
If we focus on predicted pairs of people in social groups,
for the 11 groundtruth pairs, our system achieves 91% recall
and 71% precision.

TABLE 6: Comparison of the group discovery result on the
PSUHub dataset.

Match Rate κ
dichotomous [18] 84% 0.74
trichotomous [18] 75% 0.63

dichotomous [ours] 83% 0.58
trichotomous [ours] 76% 0.49

We also compare our method with Chamveha et al [8]
on the Towncentre dataset. Since their implementation is
not available, we report the same measure, group accuracy
(whether two people are in a group or not, compared with
human annotation), as reported in the paper on the same
dataset. We achieve an accuracy of 78.2% while they report
81.8%. The results are comparable and their method is
based on the ground truth trajectories.

We further test our spatial-temporal clustering method
against Ge et al. [18] on their publicly available PSUHub
dataset and compare with their results. The dataset provides
2476 pedestrian trajectories in 177 time windows without
images. We show the results in Tbl. 6.

We achieve comparative matching rates to a method
designed solely for group discovery. Our model is inferior
in terms of Kappa test, but we still get moderate agreement
with ground truth. Note that our model is very simple to
implement with only one parameter (weight for group size
penalization, which is fixed across each dataset), while
we are aware of at least four free parameters in Ge et
al. [18]. Also, our method tends to group strangers that
follow common path. Such pragmatic social groups still
help tracking and head pose estimation. (Strangers may
still follow common path, look at where they are heading
to, or look at common object of interest.) Furthermore, the
coupling of our clustering method with tracking makes it
more practical when full trajectories are not available.
7.5 Running Time
We use a standard desktop and all our code is implemented
in Matlab without specific optimization or parallelization.
For the tracking problem, given tracklets and the affinity
matrix H , the running time of our optimization depends
on the implementation of the second-order gradient based
method and scales with the number of tracklets. For the
datasets in this paper, it takes 1 to 10 seconds to converge
to a local maximum for each run on a time window.
Though multiple runs with different random initializations
are necessary to find a better optimum, our optimization is
trivial to parallelize for each run. For head pose estimation,
our implementation for training takes about one minute to
converge to the global optimum with 100 pairs of data.
Testing typically takes fewer than 5 seconds to finish (since
no gradient descent is involved). Group discovery given full
trajectories takes less than one second for each time window
for the PSUHub dataset.

8 CONCLUSION
We show a general framework of coupling the novel social
grouping context with important computer vision tasks
including multi-target tracking and head pose estimation.
Certain sub-components in our framework are naturally
coupled and thus can be joint optimized. We then provide
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effective solvers for those components based on nonlinear
optimization and conditional random field. We conduct
extensive experiments to show that social grouping con-
text helps tracking and head pose estimation. Our social
grouping model alone can also produce reasonable results.
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Abstract

Electronic Health Records (EHRs) consist of sparse, noisy, incomplete, heterogeneous and
unevenly sampled clinical data of patients. They include physiological signals, lab test
results, procedural events, clinical notes. Such data can be treated as a temporal stream of
events of varied types occurring at irregularly spaced time points. We focus on modeling
the temporal dependencies that arise due to the types, timings, and values of different
events in such data. We model the event streams, including vital signs, laboratory results
contained in two different datasets (MIMIC III — Medical Information Mart for Intensive
Care clinical database — and data extracted from EHRs of patients in a tertiary pediatric
intensive care unit) using a piecewise-constant conditional intensity model (PCIM), a type
of marked point process. Our experiments capture meaningful temporal dependencies and
show improvement in hospital mortality prediction over traditional ICU scoring systems.

1. Introduction

Electronic Health Records (EHRs) contain detailed records of patients symptoms, demo-
graphics, outcomes, and other encounter information. In this paper, we concentrate on
records from stays in intensive care units (ICUs), because they provide an intense, well
monitored, and (relatively) short duration episodes. These attributes allow for the collec-
tion of large number of patient trajectories with definite outcomes. We expect many of the
modeling lessons learned in this setting to be transferable to other areas of patients’ medical
records.

We view the EHR data of a patient as a timeline of events happening throughout the
patient’s stay in the ICU, where an event for an individual patient is a new measurement

c©2017.
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of a particular physiological variable, a new lab test, a dosage of a particular drug, or a
procedure performed, started, or stopped. The measurements associated with such events
are indicative of patient states and the subject of constant monitoring from clinicians. But,
the temporal dynamics of the stream of events carry extra information for event forecasting
and understanding severity of illness. For example, abnormal values for blood pressure
could indicate critical states of a patient, but a higher measurement rate could also indicate
high degree of urgency. Higher values of a certain physiological variable could instigate the
clinicians to order a particular lab test. High values of that lab result could result in ordering
of a related lab result, or initiate the dosage of a particular drug. These complex temporal
dependencies that arise due to time, value, and types of different events throughout the
timeline of a patient’s stay in an ICU could be vital in understanding the temporal dynamics
of the patient’s state(e.g. severity of illness). These sort of data are not missing-at-random
(or, more accurately, “measured-at-random”).

One challenge in modeling medical data is the irregular arrival of different events. Not
only are the temporal patterns of measurements indicative of the patients’ conditions, but
those patterns do not correspond to regular sampling intervals and are dependent on the pre-
vious history. Therefore, in this paper we model the timing information in the continuous-
time domain. As a result, no fixed sampling rate had to be chosen. Also, the heterogeneous
nature of the data requires a model that can capture temporal dependencies between events
of varied types. These properties of the complex EHR data stream has led to our choice
of using a non-Markovian marked point process model named PCIM (Gunawardana et al.,
2011).

Our general goal is to explore how modeling the temporal dynamics of the raw EHR
data stream in continuous time domain could facilitate certain critical decision making tasks
performed in an ICU. To achieve that goal, we have performed mortality prediction in the
ICU using the first 24 hours of ICU data from two different datasets, including the publicly
available MIMIC-III database (Johnson et al., 2016).

Severity of Illness (SOI) assessment and mortality modeling is a broad area of research in
health informatics. SOI and mortality scores are used to predict patient outcome and often
used as the principal measures of quality-of-care comparison among ICUs and stratification
for clinical trials. Scoring systems like SAPS-I (Simplified Acute Physiology Score) (Le Gall
et al., 1984), SAPS-II (Le Gall et al., 1993), PIM2 (Pediatric Index of Mortality) (Slater
et al., 2003), and PRISM3 (Pollack et al., 1996) are the accepted current practices in
ICU acuity scoring, but are based on static snapshots of certain clinical variables over a
patient’s stay in the ICU and ignore the rapidly evolving temporal dynamics of the clinical
variables. Several works in the literature have focused on boosting the predictive power of
such scoring systems using rich clinical information present in an EHR such as, clinical notes
(Ghassemi et al., 2014; Lehman et al., 2012). While the temporal dynamics of the topics
derived from the notes using traditional topic modeling techniques are useful (Jo et al.,
2015; Ghassemi et al., 2015) for patient risk assessment, the temporal information present
in patient trajectories of raw vital signs or lab measurements has not been extensively
studied. We conclude that temporal modeling of clinical variables including vital signs and
lab tests can complement the standard scoring systems and improve mortality prediction
performance.

In this paper we make the following contributions.

2
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• We model the temporal dependency in streams of measurement data using piecewise-
constant conditional intensity models (PCIMs).
• For modeling the measurement values we extend the PCIM model to allow marks that

contain continuous-values, in addition to the discrete-valued labels.
• From the learned models, we assign risk scores to each patient trajectory with vital

signs and lab tests and use these as inputs to a feedforward neural network (Hornik
et al., 1989) to predict mortality.

2. Methods

As the data are irregularly sampled, we modeled the timings of the measurements in the
continuous-time domain. We discuss the marked point process models used in the next
subsection.

Outside of health care, temporal event sequences has been studied in other areas includ-
ing genetics (Friedman et al., 2000), data center management (Oliner and Stearley, 2007),
neuroscience (Truccolo et al., 2005), and web search query logs. Event streams can be mod-
eled in either discrete or continuous time. Discrete time approaches, such as Hidden Markov
Models (HMMs) (Rabiner, 1989; Leonard E. Baum, 1966) and Dynamic Bayesian Networks
(DBNs) (Dean and Kanazawa, 1988), require discretizing event times to a fixed sampling
rate. The irregular sampling property of the EHR data makes the discrete approach less
appealing. Recent approaches in modeling continuous time processes include Continuous
Time Bayesian Networks (CTBNs) (Nodelman et al., 2002), Continuous Time Noisy-Or
(CT-NOR) (Simma et al., 2012), Poisson Cascades (Simma and Jordan, 2012), Poisson
Networks (Rajaram et al., 2005; Truccolo et al., 2005), and piecewise-constant conditional
intensity models (PCIMs) (Gunawardana et al., 2011). We chose the last, PCIM, which is
a class of marked point process, due to its flexible representation of the rate function as a
decision tree. This promotes an interpretable and concise representation of the temporal
dependencies.

2.1 Piecewise-Constant Conditional Intensity Model

Assume events are drawn from a finite label set L, representing the different event types.
An event can then be represented by a pair: a time stamp t and a label l ∈ L. An event
sequence x is {(ti, li)}ni=1, where 0 < t1 < . . . < tn. We use hi = {(tj , lj)|(tj , lj) ∈ x, tj < ti)}
for the history of event i. Let t(y) for an event sequence y be the time of the last event in
y, such that t(hi) = ti−1.

A conditional intensity function λ(t|x) associated with a temporal point process is the
expected instantaneous rate at which events are expected to occur at time t given the history
before t. A conditional intensity model (CIM) is a set of such non-negative conditional
intensity functions indexed by the labels {λl(t|x, θ)}l∈L. The likelihood of event sequence
x can then be written as

p(x|θ) =
∏

l∈L

n∏

i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ), (1)

3
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where Λl(t|h; θ) =
∫ t
t(h) λl(τ |h; θ)dτ . If l′ = l, the indicator function 1l(l

′) is one, and it

is zero otherwise. λl(t|h; θ) is the expected rate of event l at time t given h and model
parameters θ. As it is conditional on the entire history, the process is non-Markovian.

A PCIM is a class of CIM where the conditional intensity function is a piecewise-constant
function of time for any history. For each label l, a local structure Sl specifies regions in the
timeline, where the conditional intensity function is constant and local parameters for each
label θl represent the values of the intensity function in those regions. Formally, PCIMs
are composed of local structures Sl = (Σl, σl(t, x)) and local parameters θl = {λls}s∈Σl ,
where Σl denotes the set of states where the conditional intensity function is constant, λls
are non-negative constants representing the intensities in those states, and σl is a piecewise
constant state function in time that maps a time and a history to Σl. In a PCIM, the state
function for each label, σl, is represented using a decision tree where the states s ∈ Σl are
the leaves and the internal nodes are binary test functions, formally defined as basis state
functions (Gunawardana et al., 2011). They map a time t and a history h to a subtree.
If the test functions are picked to be piecewise-constant functions of time for any event
history, the intensity function λl(t|h) = λls, where s = σl(t, h) becomes piecewise-constant
as well. The resulting likelihood of the event sequence x can then be written as

p(x|S, θ) =
∏

l∈L

∏

s∈Σl

λ
cls(x)
ls e−λlsdls(x) , (2)

where S = {Sl}l∈L, θ = {θl}l∈L. c and d are the sufficient statistics for likelihood calculation.
cls(x) is the total number of events of label l occurring in x that map to state s, and dls(x)
is the total duration when the trajectory for l is mapped to s. An example of a PCIM
model is given in Figure 1.

The basis state functions or the test functions need to be carefully chosen to control the
capacity of the resulting model. One of the approaches is to index the functions based on
predefined time windows and thresholds. Some examples are

• Is the time of day between 6am and 9am?
• Is the number of events with the label B in the past half an hour greater than a

threshold?
• Was the most recent event of label A?

The piecewise-constant assumption allow for efficient inference and learning of the
model. Gunawardana et al. (2011) showed that the marginal likelihood of an event se-
quence, x, can be computed in closed form given the structure S using a product of gamma
distributions as a conjugate prior for θ. For learning the decision trees greedily, imposing
a structural prior allows a closed form Bayesian score to be computed. Given a structure,
the rates associated with the states (leaves) can be selected using maximum a posteriori or
maximum likelihood estimation.

2.2 Extending PCIM

In the previous sections, we have represented an event sequence as a sequence of pairs,
where each pair consists of the time stamp and label representing the time and type of a
particular event. For EHR data, we take the label to be the type of measurement (pulse, for
example). However, these events also have associated values (the heart rate measurement,
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A in [t-1,t)

A in [t-2,t-1)

Yes

rate=0.2
(s=A3)

No

rate=0.01
(s=A1)

Yes

rate=5.0
(s=A2)

No

B in [t-1,t)

B in [t-2,t-1)

Yes

A in [t-5,t)

No

rate=0.01
(s=B1)

Yes

rate=5.0
(s=B2)

No

rate=0.2
(s=B3)

Yes

rate=0.01
(s=B4)

No

t 0 1 2 3

events A A B A

σA A3 A2 A1 A3 A1 A2

σB B4 B3 B2 B3

Figure 1: Top: Example decision trees representing a PCIM for two labels A and B. From
Gunawardana et al. (2011). Bottom: Example trajectory and the corresponding piecewise-
constant assignment of time to states (leaves of the PCIMs).

for example). In this paper, we have focused only on events with numerical values. However,
we expect our modeling lessons to be transferable to other forms of event data including
clinical notes which can be represented in numerical format, such as topic proportions.

Incorporating the values, an event is now a triple: a time stamp t, a label l ∈ L and the
value of the event v ∈ R. The notation for an event sequence x then becomes {(ti, li, vi)}ni=1,
where 0 < t1 < . . . < tn. We have extended the original PCIM model to model the values

in each state s ∈ Σl. We impose a Gaussian distribution 1
σls
√

2π
e
− 1

2σ2
ls

(v−µls)2
on the value

v associated with an event from a particular state s, represented by a leaf in the decision
tree. The parameter set θl is now {λls, µls, σls}s∈Σl , and, after incorporating the product of
Gaussians with the product of the exponential distributions in Equation 3, the likelihood
is

p(x|Sl, θl) =
∏

s∈Σl

Λlsλ
cls(x)
ls e−λlsdls(x) , (3)

where

Λls =

(
1

σls
√

2π

)cls(x)

e
− 1

2σ2
ls

(uls(x)−2µlsmls(x)+µ2lscls(x))
. (4)

Here, uls(x) =
∑

v←s v
2, mls(x) =

∑
v←s v are the sufficient statistics where v ← s indicates

that v is the value of an event of the portion of x that has been mapped to state s. We add a
normal-gamma distribution as the (independent) prior over each µls-σls pair of parameters
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to allow for closed-form Bayesian scores for structure learning via the greedy tree-growing
algorithm.

3. Cohorts

Mortality modeling is often performed among heterogeneous population of patients to com-
pare quality of care between different ICUs. To demonstrate the generality of our proposed
modeling approach, we focus on two different cohorts, a cohort of pediatric patients in a
tertiary PICU and a cohort of adult patients.

3.1 Cohort 1

We used data from the EHR archive of PICU at Children’s Hospital Los Angeles (CHLA),
which consists of 11684 patient episodes, collected over a period of 10 years. It includes
demographics, outcomes, PIM2 and PRISM3 scores, and times and value for measurements
of vital signs, interventions, drugs, and lab tests.

3.2 Cohort 2

We also conducted our experiments on the publicly available MIMIC-III database which
integrates de-identified clinical data of patients admitted to the Beth Israel Deaconess Med-
ical Center in Boston between 2001 and 2012. We removed patients younger than 18 years
old to focus on adult patients in an ICU. The dataset includes vital signs, laboratory results,
medications, charted observations, clinical notes.

4. Experiments

To show the effectiveness of our proposed temporal dependency modeling approach, we
conducted experiments to predict in-hospital mortality based on the first 24 hours of clinical
data for both the cohorts. The pre-processing step involves aggregating multiple related
variables and normalization. Next, using a hold-out validation set, we select the final set of
variables to be included in the PCIM models, based on the univariate performance of each
variable. The final set of variables correspond to the set of event types or the label set L.
Critical components of the models, such as the basis state functions, were also chosen using
the validation set. Next, we learned two separate sets of PCIM models on the training set for
the two classes of patients: patients who died in hospital and those who survived. Finally,
we obtain a severity of illness score from the two sets of models using the log odds ratio and
use this score as a mortality predictor. Details for each of the steps in our experimental
process are explained in the following subsections.

4.1 Data Pre-Processing and Experimental Setup

For both datasets, some of the most commonly used clinical variables used in ICU scoring
systems (PRISM3, SAPS-I, SAPS-II) were used to compose the primary sets of variables
to perform our experiments. For the MIMIC-III dataset, we aggregated multiple related
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variables into one using a publicly available codebase1. The same codebase was also used
to extract patient mortality outcomes, SAPS-I, SAPS-II score, and measurements for the
first 24 hours. The data of Cohort 1 were similarly mapped.

For the cohort of pediatric patients, we normalized the values of age-dependent vari-
ables, such as heart rate, dividing by the median value among healthy children of the
same age range and sex, according to published tables (Fleming et al., 2011). Then, we
performed z-score normalization for all variables and removed data falling outside of ±4
standard deviations from the mean of each variable. For adult patients there is relatively
low variability on variables across different age groups and therefore we performed only
z-score normalization.

The two class labels are “death” and “survival.” We take the former to be the positive
class. For both datasets, we randomly perform a (65-15-20) training-validation-test split.
The validation set was used for hyper-parameter tuning and selection of the set of binary
tests (both type and parameters). In order to make comparisons with PIM2 and PRISM3,
we ran our final experiments for Cohort 1 on patient episodes with both PIM2 and PRISM3
scores reported in the dataset (PRISM3 scores of 0 were dropped). This resulted in a final
dataset containing 4601 patient episodes (mortality rate 6.2%). Constructing only the test
set with patient episodes having both scores reported would have introduced bias. For
MIMIC-III, the final dataset included 34971 patient episodes corresponding to the first ICU
and hospital stay of the patient (in hospital mortality rate 11.67%).

4.2 Choice of Binary Tests

The base binary tests available for internal nodes for the PCIM are listed in Table 1. The
tests for checking whether the total number of measurements within some time interval
is greater than a particular threshold (τ) is to allow the model to capture the burstiness
in measurements of certain vital signs and lab tests. These tests allow modeling of self-
excitation (burstiness) and self-suppression. We also introduce a test to check whether the
number of measurements with value ≥ τ ′ is greater than a particular threshold (τ) within a
particular time interval. This allows the rate of subsequent events to depend on the values
of previous events (e.g. measurements with extreme values of a particular variable causing
more events of the same or a different variable in near future).

The full bank of binary tests are chosen by selecting the parameters from pre-determined
sets of values. In particular, “past t hours” uses t ∈ {1/60, 1/12, 1/4, 1/2, 1, 24}; “value≥ τ ′”
uses τ ′ ∈ {−3.0,−2.5,−2,−1.5, 1.5, 2, 2.5, 3.0}×std. dev.+mean; “number of measurements
≥ τ” uses τ ∈ {0, 1, 5, 10, 20, 30, 50}; and “current time is within a particular interval of the
day” uses range of one of “within δt minutes of the top of the hour,” where δt ∈ {1, 2, 5, 15}
or within the first t hours of the day where t ∈ {1, 2, 3, . . . , 24}.

4.3 Severity of Illness Score computation

Denote the set of models learned for the “died” class as Mdeath and the set for the “survived”
class as Msurvive. Both sets include PCIM models learned on the measurement timings and
values of the selected variables. While each PCIM tree models the rate for one particular

1. https://github.com/MIT-LCP/mimic-code
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number of measurements of variable X in past t hours is ≥ τ
number of measurements of variable X in past t hours with value ≥ τ ′ is ≥ τ
current time t is within a particular interval within the day

Table 1: Binary Tests for learning PCIM. X denotes any measurement variable and τ and
τ ′ are each one of a set of thresholds.

variable, the binary tests in the tree can look at all available variables (both vitals and labs)
to capture the temporal dependencies with other variables. If the corresponding PCIM trees
for a particular variable v in the two sets Mdeath and Msurvive are denoted by mvd and mvs

respectively then, the SOI score corresponding to variable v for patient with event sequence
x is calculated by the log-odds: log p(mvd|x)

p(mvs|x) . These individual SOI scores for each variable
can be summed up to form a single SOI score or can be used as inputs along with other
features to a final classifier model.

4.4 Full Severity Score

We use a feedforward neural network as the final classifier using the computed severity
of illness scores (as above) and other features. For MIMIC-III, the static features include
age, gender, minimum Glasgow Coma Scale, minimum ratio of partial pressure arterial
oxygen and fraction of inspired oxygen, total urine output, co-morbidity, and reception of
ventilation, all collected in the first 24 hours. For the CHLA dataset, we used PIM2 score
as a feature.

For both datasets, we use a feedforward architecture with 3 hidden layers with 256
hidden units each. Number of hidden layers and number of hidden units were selected
based on performance on validation data. A dropout (Srivastava et al., 2014) rate of 0.5
was used for each hidden layer. All the models were trained with the Adam optimization
method (Kingma and Ba, 2014) using early stopping. We used the Keras Deep Learning
Library (Chollet et al., 2015) for our implementations.

4.5 Baselines

For evaluating the predictive performance of our approach, we compare with PIM2 and
PRISM3 scores for cohort 1, and SAPS-I and SAPS-II scores for cohort 2.

5. Results and Discussion

In this section, we present a comparative evaluation of our method with the standard ICU
scoring systems. Statistical significance of the difference between the ROC curves presented
was measured using MedCalc statistical software2 (DeLong et al., 1988).

Figure 2(a) shows the comparison of ROC curves for PIM2, PRISM3, and SOI scores
computed from PCIM models. SOI scores computed from the learned PCIM models out-
perform standard scoring system baselines, PIM2 and PRISM3 (p(PCIM ∼ PRISM3) <
0.024 and p(PCIM ∼ PIM2) = 0.146). The reason for relatively higher p-values is highly

2. https://www.medcalc.org
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Figure 2: Comparison of all methods for in hospital mortality prediction
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Figure 3: Comparison of all methods for the scoring of labs and vitals variables in MIMIC-III
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likely to be caused by the small test set size of the Cohort 1. PCIM models do not directly
incorporate information such as admission baseline features which capture how ill a child
was at the time of admission. PIM2 is largely based on such features calculated within two
hours of admission and outperforms PRISM3 in our experiments on the holdout testset.
Best performance is achieved when PIM2 is combined with the SOI score obtained from the
PCIM models by adding PIM2 as an extra feature to the feedforward net.

ROC curves for SAPS-I, SAPS-II, and SOI scores computed from PCIM models on
the MIMIC-III dataset are presented in Figure 2(b). Similar to the CHLA dataset, pre-
admission and in-ICU information, such as ventilation and comorbidity were not directly
incorporated in the PCIM models. When added to our method (again, as features to the
feedforward net), we outperform both SAPS-I and SAPS-II with statistical significance
(AUROC difference has p < 0.0001).

For MIMIC-III, Figure 3 shows the ROC curves using only labs or only vital signs. Scores
computed from the four vital variables significantly outperform (AUROC, p < 0.0001) the
isolated vitals scores of both SAPS-I and SAPS-II, computed using certain ranges of values,
Figure 3(b). The area under the ROC curve difference computed only using the lab variables
is similarly statistically significant (p(PCIM ∼ SAPS-I) < 0.0001 and p(PCIM ∼ SAPS-II)
= 0.0001), Figure 3(a).

6. Differences with existing Recurrent Neural Network based Methods

While existing RNN based approaches (Lipton et al., 2015; Aczon et al., 2017; Harutyunyan
et al., 2017; Lipton et al., 2016; Che et al., 2016) can capture the temporal trend of the
values of the variables, our proposed methodology also takes into account the rate of events
by directly modeling the generation of a new event of a particular type with respect to
previous events’ values, timings, and types. One particular advantage to directly model
the event generation process in continuous time domain is to avoid discrete window-based
aggregation and any form of data imputation. Discrete time approaches usually assume the
data are “missing at random,” which does not always hold for irregularly sampled data.
This can lead to reduced variability of more frequently measured signals. Imputing normal
values for missing data loses the distinction between a truly normal and a missing mea-
surement. Additionally, forward and back filling imputation strategies discard information
about the timings of the measurements. Other advantages of our method are the model in-
terpretability, added flexibility of model selection through the choice of basis state functions,
and applicability in small to intermediate datasets, where neural network based methods
might be an overkill and prone to overfitting. We would like to explore connections between
recurrent neural networks and marked point process (Xiao et al., 2017; Du et al., 2016) in
our future work to extract the advantages of both methods simultaneously.

7. Related Works

Standard ICU scoring systems developed for pediatric (e.g. PIM2, PRISM3) and adult (e.g.
SAPS-I, SAPS-II) ICU units rely on scoring a patient based on a range of values of particular
physiological variables recorded within the first 24 hours, in addition to information such
as pre-ICU procedures, admission category and in-ICU ventilation data. However, they
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largely ignore the temporal nature of the data and are often susceptible to missing values.
These scores are good for early detection of severe illness and are excellent benchmarking
tools for determining ICU performance.

Recent work has focused on extracting more meaningful features from sources like clinical
notes, which is ignored in traditional ICU scoring systems. Both Lehman et al. (2012) and
Ghassemi et al. (2014) used non-parametric topic modeling techniques, hierarchical Dirichlet
process and latent Dirichlet allocation (LDA) respectively, for learning the latent topic
structure of nursing notes, which improves mortality prediction performance over SAPS-I
and SAPS-II. Ghassemi et al. (2015) used multi-task Gaussian process (MTGP) models to
model irregularly sampled clinical data and new clinical notes for acuity forecasting. Their
approach shows that hyperparameters learned from MTGP models capturing the temporal
change in topic membership of notes recorded for a particular patient can improve mortality
prediction performance, if combined with SAPS-I and latent topic features. Jo et al. (2015)
proposed a model combining LDA and Hidden Markov Models (HMMs) to capture the
temporal dynamics of underlying patient states from the clinical notes and improve long
term mortality prediction.

Lipton et al. (2015) used Long Short Term Memory Recurrent Neural Networks (LSTM-
RNNs) in disease phenotyping. However, they employed a discrete (hourly) time window
based approach and imputed values in missing windows using either forward or back-filling
strategy. In a subsequent work (Lipton et al., 2016), better performance was achieved
using binary indicator variables for the time windows with missing values, however it still
relied upon a window based scheme. Aczon et al. (2017) developed a dynamic mortality
risk prediction model using LSTM-RNNs in pediatric ICU data. They didn’t resample the
data at any fixed sampling rate, however depended upon zero or forward imputation for
the values of variables, which had no recorded value at a particular time-point where at
least one variable was recorded for a particular patient. Che et al. (2016) proposed a model
based on Gated Recurrent Units (GRUs) with trainable decays to capture the temporal
structure of the missing values. The AUROC achieved on the MIMIC-III dataset (19714
admission records) with 24 hours of data is 0.78821. The feature set however, consisted of 91
extra variables in addition to the 8 lab variables used separately in one of our experiments,
achieving an AUROC of 0.76486. None of these works however, focused on capturing the
intensities of events of varied types and their dependence on previous history across the
timeline of a patient stay.

Marlin et al. (2012) focused on unsupervised learning from time series data collected
from a pediatric ICU. While their approach shows non-uniformities among patients across
different clusters extracted, their approach also employs a discrete time window and ig-
nores measurement timings. Joshi and Szolovits (2012) modeled patient acuity using an
unsupervised learning approach, radial domain folding, which in an organ specific manner,
learns lower dimensional abstractions from routinely generated physiological data. Logistic
regression models trained on the learned RDF layers outperform SAPS-II scoring system
in mortality prediction. Weiss and Page (2013) used a forest-based point process model
(an extension of the PCIM) to predict future onset of myocardial infractions. Based on
the rates learned from event history, rates of future events are forecast. Their approach
shows the strength of continuous time models in medical data, however doesn’t address the
temporal modeling of routinely measured physiological signals. Saria et al. (2010) focused
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on a non-parametric Bayesian method for data analysis in continuous time series including
health care data, based on topic models.

8. Conclusion

Our contribution has been to demonstrate the efficacy of directly modeling the continuous-
time temporal dependencies of discrete events recorded in an EHR. Our results indicate
that a severity of illness score computed using our proposed modeling technique improves
the performance of hospital mortality prediction.

One of the limitations of our approach is the use of a generative model for the task
of classification, using the log-odds calculated from the representative models for the two
class labels, learned separately. However, careful choice of the basis state functions from a
validation set resulted in significant discrimination between learned models of the two classes
and improved prediction performance. Discriminative training might better accentuate the
temporal differences between the two classes. This is left as a future work.

Our method provided features to a feedforward neural network. We added other static
measurements as features to the feedforward net. These could have also been added as
possible values for binary tests in the PCIM model. This, particularly in conjunction with
disciminative PCIM training, might work better as a classifier. We also focused only on
nine variables for MIMIC-III because those are used in SAPS-II. The model might also
be improved with an more expansive variable set. For the Cohort 1 data, we used more
variables and saw a larger improvement. In one case, this was not statistically significant;
we expect this is because of the relatively smaller sample size.
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Appendix: Final Variables

Best motor response (GCS) Best verbal response (GCS)
Glasgow coma scale total Eye opening response(GCS)
Capillary refill rate (sec) Diastolic blood pressure non-invasive (mmHg)
Systolic blood pressure invasive (mmHg) Systolic blood pressure non-invasive (mmHg)
Pulse oximetry percentage Heart rate (bpm)
Respiratory rate (bpm) EtCO2 (mmHg)
Left pupillary response Right pupillary response
Temparature (C)

Table 2: Vital Signs (Cohort 1: CHLA)

ABG Base excess (mEq/L) ABG PCO2 (mmHg)
ABG pH Albumin level (g/dL)
BUN (mg/dL) Bicarbonate serum (mEq/L)
Bilirubin total (mg/dL) CBG PCO2 (mmHg)
CBG pH Calcium ionized (mg/dL)
Calcium total (mg/dL) Chloride (mEq/L)
Glucose (mg/dL) P/F ratio
PT PTT
Platelet count (K/uL) Potassium serum (mEq/L)
Sodium serum (mEq/L) VBG Base excess (mEq/L)
VBG PCO2 (mmHg) VBG pH
White blood cell count (K/uL)

Table 3: Labs (Cohort 1: CHLA)

Bicarbonate BUN
Sodium Potassium
WBC Heart Rate
Respiratory Rate Systolic Blood Pressure
Temperature(C)

Table 4: Labs and Vital Signs (Cohort 2: MIMIC-III)
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Appendix G

Event Detection in Continuous Video:
An Inference in Point Process
Approach
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Zhen Qin and Christian R. Shelton. Event Detection in Continuous Video: An Inference in Point
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Event Detection in Continuous Video: An Inference
in Point Process Approach

Zhen Qin and Christian R. Shelton

Abstract—We propose a novel approach towards event de-
tection in real-world continuous video sequences. The method
1) is able to model arbitrary-order non-Markovian dependen-
cies in videos to mitigate local visual ambiguities, 2) conducts
simultaneous event segmentation and labeling, and 3) is time-
window free. The idea is to represent a video as an event
stream of both high-level semantic events and low-level video
observations. In training, we learn a point process model called
piecewise-constant conditional intensity model (PCIM) that is
able to capture complex non-Markovian dependencies in the
event streams. In testing, event detection can be modeled as
the inference of high-level semantic events, given low-level image
observations. We develop the first inference algorithm for PCIM
and show it samples exactly from the posterior distribution. We
then evaluate the video event detection task on real-world video
sequences. Our model not only provides competitive results on
the video event segmentation and labeling task, but also provides
benefits including being interpretable and efficient.

Index Terms—video event detection, event segmentation and
labeling, video understanding, dependency modeling, video gram-
mar, point process.

I. INTRODUCTION

EVENT detection systems aim at identifying and local-
izing the classes of the events present in a video, such

as a person sitting down, independently of the background.
It is a key step towards real-world video understanding and
has applications such as video indexing, video retrieval, and
anomaly detection [33]. The large corpus of literature [34]
usually model video event detection as a classification or
labeling problem. Given coherent constituent parts from video
segmentation in the temporal domain, a feature vector can
be generated for each segment and serves as input for a dis-
criminative classifier [18]. Another popular approach involves
generating segmentation candidates via sliding windows and
perform analysis at multiple temporal scales [20] [2].

However, video segmentation is an unsolved computer
vision problem, and sliding windows approaches can be ex-
pensive. Also, visual ambiguity is unavoidable in real-world
videos. By only looking at local visual features (either from
a segmented clip or a time window), events of the same
label might look quite different (when performed by different
characters, or if the event has intrinsic intra-class variance),
and events of different labels might look similar (for example,
“punching” and “shaking hands” both consist of putting one’s
arm forward, see Fig. 1).

Z. Qin and C. Shelton are with the Department of Computer Science and
Engineering, University Of California, Riverside, Riverside, CA, 92521 USA
e-mail: {zqin001, cshelton}@cs.ucr.edu.

This work was supported by the Defense Advanced Research Projects
Agency (FA8750-14-2-0010) and the National Science Foundation (IIS
1510741).

Fig. 1: (Left & Middle) Punching, (Right) Shaking Hand.
Based only on visual features, the same action can look differ-
ent, while different actions can possess similar appearances.

Contextual information could help to disambiguate, and we
focus on modeling temporal context in this work. For example,
if followed by the “person running” or “person falling down”
events, we should be more certain that the event before is
“punching”, instead of “shaking hand”.

We propose a new approach to explore temporal dependen-
cies among events and visual observations in video: In training,
given both observed low-level events (local visual features)
and annotated high-level semantic events, we can build a point
process model to learn complex dependencies in video event
streams. In testing, the detection of high-level events can be
modeled as an inference problem, given the observed low-
level events. See Fig. 2 for an illustration of an event stream
representation of video. This modeling approach allows us
to leverage the machine learning and statistics literature on
dependency modeling in point process.

We use a state-of-art point process model, called a
piecewise-constant conditional intensity model (PCIM) [17].
PCIM captures the dependencies among the types of events
through a set of piecewise-constant conditional intensity func-
tions. A PCIM is represented as a set of decision trees (see
Fig. 3 for an example), which provide model interpretability
and allow for efficient model selection. In training, by applying
PCIM learning on annotated videos, PCIM is able to learn
the complex dependencies in the (annotated) video event
streams, with the extra benefit of providing a meaningful video
grammar.

In testing, the video event detection task we are interested
in requires an inference algorithm for PCIM. An inference
algorithm allows localizing and labeling high-level semantic
events given only low-level visual observations in unannotated
testing videos. An exact inference algorithm is able to take
advantage of the rich dependencies learned in training, thus
mitigating local visual ambiguities in video event detection.
Also, inference in point process provides both time and label
of inferred events, allowing automatic simultaneous event seg-
mentation and labeling, without the need of sliding windows.

  However, no inference algorithm has been proposed for
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Enter Room
Exit Room
Sit Down
Stand Up
Work Laptop
Work Paper
Throw Trash
Pour Drink

w1

w2
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w5

w6

w7

t

Fig. 2: A sample event stream representation of video. The events above the video clip are the semantic high-level events. ws
are the low-level visual observations. Note for high-level events we use bars for a clearer illustration, in practice each of them
is represented as two points (starting time and ending time with event labels). See text for more details.

PCIM that can condition on evidence (visual observations).
Correctly filling in incomplete event streams from a PCIM is
challenging, due to the complex non-Markovian dependencies
between past and future evidence.

In this paper, we propose the first general inference al-
gorithm for PCIMs, based on thinning for inhomogeneous
Poisson process [26]. This inference algorithm can be used in
the video event detection task, as well as any other tasks using
PCIMs. Our formulation is an auxiliary Gibbs sampler that
alternates between sampling a finite set of virtual event times
given the current trajectory, and then sampling a new trajectory
given the set of evidences and event times (virtual and actual).
Our method is convergent, does not involve approximations
like fixed time-discretization, and the samples generated can
answer any type of query. We propose an efficient state-vector
representation to maintain only the necessary information for
diverging trajectories, reducing the exponentially increasing
sampling complexity to linear in most cases. We show empir-
ically our inference algorithm converges to the true distribution
and permits effective query answering for PCIM models with
both Markovian and complex non-Markovian dynamics.

We apply the PCIM inference algorithm to the video event
detection task and show competitive results over state-of-arts
on real-world long continuous videos. Our modeling approach
is able to learn complex temporal dependencies in video, and
exploit these dependencies to mitigate local visual ambiguities
in event detection. The major contributions of our work are:
• A novel approach for video event segmentation and

labeling via inference in point process, which does not
rely on video pre-segmentation or sliding windows;

• The use of a PCIM to learn complex dependencies in
video and provide meaningful video grammars; and

• The first exact inference algorithm for PCIMs that can be
used for event detection and other tasks. [35] described
a preliminary piece of this inference algorithm.

A. Related Work
We first describe related work in machine learning that

models temporal dependencies. A dynamic Bayesian network

(DBN) [10] models temporal dependencies between variables
in discrete time. Continuous-time models have drawn attention
recently in applications ranging from social networks [11][13]
to genetics [8] to biochemical networks [15]. Continuous Time
Bayesian Networks (CTBN) [29] are homogeneous Markovian
models of the joint trajectories of discrete finite variables,
analogous to DBNs. Non-Markovian continuous models allow
the rate of an event to be a function of the process’s history.
Poisson Networks [36] constrain this function to depend only
on the counts of the number of events during a finite time
window. Hawkes processes [19] define the rate to be the sum
of a kernel applied to each historic event, requiring the modeler
to choose the form for the kernel.

A PCIM defines the intensity function as a decision tree,
with internal nodes’ tests mapping time and history to leaves.
Each leaf is associated with a constant rate. A PCIM is able
to model non-Markovian temporal dependencies, and is an
order of magnitude faster to learn than Poisson networks.
Successful applications include modeling supercomputer event
logs and forecasting future interests of web search users [17].
While PCIMs have drawn attention recently [31] [44] and
have potential usage in a wide variety applications, there is
no general inference algorithm.

Inference algorithms developed for continuous systems are
mainly for Markovian models (or specifically designed for
a particular application). For CTBNs, there are variational
approaches such as expectation propagation [12] and mean
field [8], which do not converge to the true value as com-
putation time increases. Sampling based approaches include
importance sampling [14] and Gibbs sampling [37] [38] that
converge to the true value. The latter is the current state-of-
the-art method designed for general Markov Jump Processes
(MJPs) and its extensions (including CTBNs). It uses the
idea of uniformization [16] for Markov models, similar to
thinning [26] for inhomogeneous Poisson processes. We note
that our inference method for PCIM generalizes theirs to non-
Markovian models.

Modeling temporal dependencies in general event streams
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has wide applications. For example, users’ behaviors in online
shopping [45] and web searches [27], as well as electronic
health records [44] can all be viewed as a stream of events
over time. Event streams in video is a specific case of general
event streams.

To identify and recognize events or actions in video, com-
puter vision researchers mainly focused on the classification
or labeling problem given pre-segmented video clips [34].
Feature representations used in the literature are generated
using local features such as Space Time Interest Points (STIP)
[24], Dense Trajectories [41], Fisher Vectors [32], and more
recently, deep learned representations [18] [21] [42] [47],
among many others. Some work explore contextual informa-
tion and temporal structure within complex video events [1]
[40] [48] [23], largely motivated by the popular TRECVID
MED challenge [30]. Our model learns dependencies both
within and among high-level events, and can also be applied
to the complex event detection task.

However, real-world videos are continuous, and the task
of video segmentation is an unsolved problem [9]. Also,
most existing methods entail shot boundary detection, i.e., the
segmentation of a video into continuously imaged (usually
in terms of motion) temporal segments, which rarely maps
to individual high-level events [5]. Recently, some work tries
to address the problem of simultaneous video segmentation
and labeling [20] [7] [6]. These methods mostly use the time-
consuming sliding window approaches, which process each
segment independently at multiple time scales. Post-processing
such as duration priors and non-max suppression is required
[6]. It is very difficult for these approaches to handle local
visual ambiguities in real-world videos, since each event/video
segment is processed independently from the others. High-
level contexts at video level, such as temporal dependencies,
have rarely been explored.

Some work explores Markovian dependencies among events
[22], which is limited for real-world videos with complex
dependencies. [50] models dependencies among events in a
video based on Conditional Random Fields (CRF). However,
it can only explore dependencies up to some fixed order
(chosen manually), and the computation becomes infeasible
when the order of dependency specified increases. Also, it
assumes a long video has been segmented before doing depen-
dency modeling. Recently, recurrent Neural Network (RNN)
based methods are drawing more attention [46]. They focus
more on sequence dependency modeling, instead of temporal
modeling. Temporal modeling using PCIM has the advantage
of being able to easily model cases such as ”someone enters
the office around 8am everyday”, regardless of (potentially
unbounded number of) events happened in between. Explicitly
modeling time can also be beneficial in real-world videos
with timestamps (such as videos from surveillance cameras).
It is also easier for humans to interpret and generate rules
from the decision tree representation of PCIM. Furthermore,
RNN based approaches tend to be training data hungry. Our
idea of using event stream models explicitly address temporal
dependencies in the continuous-time domain and is the first to
do so, to the best of our knowledge.

II. BACKGROUND ON PCIM

We first briefly review the background on Piecewise-
constant conditional intensity model (PCIM).

Assume events are drawn from a finite label set L. An event
then can be represented by a time-stamp t and a label l. An
event sequence x = {(ti, li)}ni=1, where 0 < t1 < . . . < tn.
We use hi = {(tj , lj) | (tj , lj) ∈ x, tj < ti)} for the history
of event i, when it is clear from context which x is meant.
We define the ending time t(y) of an event sequence y as the
time of the last event in y, so that t(hi) = ti−1. A conditional
intensity model (CIM) is a set of non-negative conditional
intensity functions indexed by label {λl(t|x; θ)}|L|l=1. The data
likelihood is

p(x|θ) =
∏

l∈L

n∏

i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
t(h)

λl(τ |h; θ)dτ . The indicator function
1l(l

′
) is one if l

′
= l and zero otherwise. λl(t|h; θ) is the

expected rate of event l at time t given history h and model
parameters θ. Conditioning on the entire history causes the
process to be non-Markovian. The modeling assumptions for
a CIM are quite weak, as any distribution for x in which the
timestamps are continuous random variables can be written
in this form. Despite the weak assumptions, the per-label
conditional factorization allows the modeling of label-specific
dependence on past events.

A PCIM is a particular class of CIM that restricts λ(h) to
be piecewise constant (as a function of time) for any history,
so the integral for Λ breaks down into a finite number of
components and forward sampling becomes feasible. A PCIM
represents the conditional intensity functions as decision trees.
Each internal node in a tree is a binary test of the history,
and each leaf contains an intensity. If the tests are piecewise-
constant functions of time for any event history, the resulting
function λ(t|h) is piecewise-constant. Examples of admissible
tests include
• Was the most recent event of label l?
• Is the time of the day between 6am and 9am?
• Did an event with label l happen at least n times between

5 seconds ago and 2 seconds ago?
• Were the last two events of the same label?

Note some tests are non-Markovian in that they require
knowledge of more than just which event was most recent.
See Fig. 3 for an example of a PCIM model.

The decision tree for label l maps the time and history to a
leaf s ∈ Σl, where Σl is the set of leaves for l. The resulting
data likelihood can be simplified:

p(x|S, θ) =
∏

l∈L

∏

s∈Σl

λ
cls(x)
ls e−λlsdls(x). (2)

S is the PCIM structure represented by the decision trees;
the model parameters θ are rates at the leaves. cls(x) is the
number of times label l occurs in x and is mapped to leaf s.
dls(x) is the total duration when the event trajectory for l is
mapped to s. Together, c and d are the sufficient statistics for

 calculating the likelihood.
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Fig. 3: Decision tree representing S and θ for events of labels
A and B. Note the dependency among event labels (the rate
of B depends on A). [17]

[17] showed that given the structure S, by using a product
of Gamma distributions as a conjugate prior for θ, the marginal
likelihood of the data can be given in closed form, and thus
parameter estimation can be done in closed form. The prior
density is given by

p(λls|αls, βls) =
βαls

ls

Γ(αls)
λαls−1
ls e−βlsλls , (3)

and the posterior density is given by

p(λls|αls, βls, x) = p(λls|αls + cls(x), βls + dls(x)). (4)

Assuming the prior over the model parameters θ is a product
of such priors, the marginal likelihood of data is

p(x|S) =
∏

l∈L

∏

s∈Σl

γls(x), (5)

with
γls(x) =

βαls

ls

Γ(αls)

Γ(αls + cls(x))

(βls + dls(x))αls+cls(x)
. (6)

Then the authors choose to use a simple point estimate
E[λls|x] for the rate, which is αls+cls(x)

βls+dls(x) .
Furthermore, imposing a structural prior allows a closed

form Bayesian score to be used for greedy tree learning. The
local structure Sl can be chosen independently for each l by
using a factored structural prior

p(S) ∝
∏

l∈L

∏

s∈Σl

κls (7)

and the prior and the marginal likelihood that also factor over
l. Given the current structure Sl (initialized as a single root),
a new structure S

′
l is considered by choosing a leaf s and

expand it with a test to get a set of new leaves {s1, · · · , sm}.
The gain in the posterior of the structure is

p(S
′
l |x)

p(Sl|x)
=
κls1γls1(x) · · ·κlsmγlsm(x)

κlsγls(x)
. (8)

The new structure with the largest gain is chosen if the gain
is larger than 1.

III. EVENT DETECTION IN VIDEO AS INFERENCE IN
POINT PROCESS

We apply PCIM to event localization and labeling in video.
We first show how to represent videos as event streams. A
PCIM can be learned from training videos, represented by

event streams, to encode nonlinear temporal dependencies be-
tween high-level events and low-level observations. In testing,
an inference algorithm can be used to infer high-level events
given low-level visual observations. This framework is among
the first to encode temporal context for the event detection in
long continuous video task.

A. Representation

Assume there are M high-level events in a video dataset,
each of which is an event with high-level semantics, such as “a
person sitting down” and “a person working on a laptop”. We
generate 2M event labels to be used in PCIM: {s1, . . . , sM}
and {e1, . . . , eM}. si indicates the starting of a high-level
event type i and ei indicates the ending of a high-level event
type i. These are the event types that are labeled in training
and to be inferred in testing.

Given a video, we divide it into segments of fixed length,
and a feature vector is generated for each of the segments.
This step is flexible, any existing video descriptors might
be applied here. Then we learn a dictionary (e.g. using K-
means clustering), so that each segment can be assigned to
one visual word in {w1, . . . , wK} and a time (we use the
middle time of each segment in the video). Together with the
starting and ending of high-level events, we have an event
stream representation of a video. See Fig. 4 for an example.

t

w2 w2 w7 w5 w6 w8 w15 w4 w8s1 e1 s3 e3

Frame 5 Frame 60 Frame 200 Frame 230

Fig. 4: An illustration of an event stream representation for
video. Low-level observations are represented as regularly
spaced events from a dictionary (the ws). s1 and e1 indicate
the starting and ending of “entering room”. s3 and e3 indicate
the starting and ending of “sitting down”.

There are several benefits for this representation: First, by
using fixed-length segment, we do not assume semantic video
pre-segmentation. Second, the usage of starting and ending of
high-level events enables automatic temporal localization and
labeling. Note that even though the low-level visual words are
regularly sampled, each word is sparse across the timeline,
which is suitable for a continuous-time model.

B. Training

Given an event stream representation of video, training can
be done by directly feeding the training data into the PCIM
learning algorithm. The resulted PCIM encodes temporal
dependencies between both high-level events and low-level
visual observations. There are three types of dependencies a
PCIM can learn:

Dependency between high-level events. Global dependencies

between high-level events can be modeled, which helps to
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mitigate visual ambiguities by utilizing temporal context. For
example, after a person working on laptop, the probability of
a person standing up should be higher than the person sitting
down. PCIM is also able to learn the dependency between s
and e for each high-level events, which encodes the temporal
range distribution of each event type.

Dependency between high-level and low-level events. This
type of dependency can be treated as local dependency. Certain
low-level observations indicate the appearance of high-level
events, or as a generative model, the high-level events “cause”
low-level features. In testing, low-level visual words are ob-
served, and are responsible for proposing high-level events.

Dependency between low-level events. This kind of de-
pendency provides interesting information about how low-
level observations can be correlated from a video grammar
perspective. But for the event detection problem, it is not very
useful as in testing all low-level observations are observed.

C. Testing as Inference

Given a PCIM learned from training data, we can model
the problem of event detection in video as the inference of
high-level events, given low-level observations. In other words,
all the ws are observed, while the ss and es are completely
unobserved. We can then apply our new inference algorithm,
ThinnedGibbs, detailed in Sec. IV, to infer the starting and
ending times of the high-level events. See Fig. 5 and Fig. 6
for an illustration.

t

w1 w2 w2 w5 w6 w8 w15 w14 w3

s1, e1, ...
sM , eM ,

Fig. 5: In testing, the low-level events are fully observed, while
the high-level events are not observed (in parentheses).

t

w1 w2 w2 w5 w6 w8 w15 w14 w3

s5 e5 s1 e1 s3 e3

Fig. 6: After running inference, each sample would fill in the
unobserved intervals for high-level events, which indicate their
starting and ending times.

IV. AUXILIARY GIBBS SAMPLING FOR PCIM

In this section we introduce our new inference algorithm
for PCIM, called ThinnedGibbs, based on the idea of thinning
for inhomogeneous Poisson processes. We handle incomplete
data in which there are intervals of time during which events
for particular label(s) are not observed.

λ = 0.1

Are there ≥ 1 l
events in

λl:

Y N

λ = 2
t t+1 t+2

R

Fig. 7: A simple PCIM with a partially observed trajectory.
The vertical solid arrow indicates an evidence event. Areas
between parentheses are unobserved. History alone indicates
there should be events filled in, while the future (no events in
R) provides contradictory evidence.

A. Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard
due to the complex dependencies between unobserved events
and both past and future events. See Fig. 7 for an example.
While the history (the event at t) says it is likely that there
should be events in the unobserved area (with an expected
rate of 2), future evidence (no events in R) is contradictory: If
there were indeed events in the unobserved area, those events
should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms such
as the forward-filtering-backward-sampling (FFBS) algorithm
for discrete-time Markov chains. However, there are two
subtleties here: First, we are dealing with non-Markovian
models. Second, we are dealing with continuous-time systems,
so the number of time steps over which to propagate is infinite.

B. Thinning

Thinning [26] can be used to turn a continuous-time process
into a discrete-time one, without using a fixed time-slice
granularity. We select a rate λ∗ greater than any in the inho-
mogeneous Poisson process and sample from a homogeneous
process with this rate. To get a sample from the original
inhomogeneous process, an event at time t is thinned (dropped)
with probability 1− λ(t)

λ∗ .
This process can also be reversed. Given the set of thinned

event times (from the inhomogeneous process), the extra
events can be added by sampling from a Poisson process with
rate λ∗−λ(t). The cycle can then repeat by thinning the new
total set of times. At each cycle, the times (after thinning) are
drawn from the original inhomogeneous process. We will use
this type of cycle in our sampler.

The difficulty is that a PCIM is not an inhomogeneous
Poisson process. The intensity depends on the entire history of
events, not just the current time. For thinning, this means that
we cannot independently sample whether each event is to be
thinned. Furthermore, we wish to sample from the posterior,
conditioned on evidence. All evidence (both past and future)
affect the probability of a specific thinning configuration.

C. Overview of Our Inference Method

To overcome both of these problems, we extend thinning to
an auxiliary Gibbs sampler in the same way that [37], [38]
extended Markovian-model uniformization [16] (a specific
example of thinning in a Markov process) to a Gibbs sampler.
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To do this we introduce auxiliary variables representing the
events that were dropped. We call these events virtual events.

As a standard Gibbs sampler, our method cycles through
each variable in turn. In our case, a variable corresponds to
an event label. For event label l, let xl be the sampled event
sequence for this label. Let Yl be all evidence (for l and other
labels) and all (currently fixed) samples for other labels. Our
goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) asso-
ciated with l and zl = xl ∪ vl (all event times virtual and
non-virtual). Our method first samples from p(vl | xl, Yl) and
then samples from p(xl | zl, Yl). The first step adds virtual
events given the non-virtual events are “correct.” The second
step treats all events as potential events and drops or keeps
events. The dropped events are removed completely. The kept
events, xl, remain as the new sampled trajectory for label l.

The proof of correctness follows analogously to that of [38]
for Markovian systems. But, the details for sampling from
p(vl | xl, Yl) and p(xl | zl, Yl) differ. We describe them next.

D. Sampling Auxiliary Virtual Events with Adaptive Rates

Sampling from p(vl | xl, Yl) amounts to adding just the
virtual (dropped) events. As the full trajectory (xl for all l)
is known, the rate at any time step for a virtual event is
independent of any other virtual events. Therefore, the process
is an inhomogeneous Poisson process for which the rate at t is
equal to λ∗−λl(t|h) where h is fully determined by xl and Yl.
Recall that λl(t|h) is piecewise-constant in time, so sampling
from such an inhomogeneous Poisson process is simple.

The auxiliary rate, λ∗, must be strictly greater than the
maximum rate possible for irreducibility. We use an auxiliary
rate of λ∗ = 2 max(λ(t|h)) to sample virtual events in the
unobserved intervals. This choice trades off well between
mixing time and computational complexity in the experiments.

A naı̈ve way to pick λ∗ is to find λmax: the maximum
rate in the leaves of PCIM, and use 2λmax. However, there
could be unobserved time intervals with a possible maximum
rate much smaller than λmax. Using λmax in those regions
would generate too many virtual events, most of which will be
dropped in the next step leading to computational inefficiency.
We therefore use an adaptive strategy.

Our adaptive λ∗(t|h) cannot depend on xl (this would break
the simplicity of sampling mentioned above). Therefore, we
determine λ∗(t|h) by passing (t, h) down the PCIM tree for
λl. At each internal node, if the branch does not depend on
xl, we can directly take one branch. Otherwise, the test is
related to the sampled events, and we take the maximum rate
of taking both branches. This method results in λ∗(t|h) as a
piecewise-constant function of time (for the same reasons that
λl(t|h) is piecewise-constant).

Consider Fig. 8 as an example. When sampling event l = A
on the interval [1, 5), we would not take the left branch at the
root (no matter what events for A have been sampled), but
must maximize over the other two leaves (as different xl values
would result in different leaves). This results in a λ∗ = 4 over
this interval, which is smaller than 6.

Are there ≥ 1 B
events in [t-5,t)?

λA

Y N

λ = 3
1 3 8

A

5
B

λ∗ = 4 λ∗ = 6

λ = 2 λ = 1

Y N

Are there ≥ 1 A
events in [t-1,t)?

Fig. 8: Adaptive auxiliary rate example. When sampling A,
the branch to take at the root does not depend on unobserved
events for A. If the test is related to the sampled event, we take
the maximum rate from both branches. The red arrows indicate
the branches to take between time [1, 5], and λ∗ = 2 × 2 in
that interval, instead of 6.

E. The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl
(the union of virtual and “real” sampled events) as a sample
from the Poisson process with rate λ∗, ignoring which were
originally virtual and which were originally “real.” We thin
this set to get a sample from the conditional marginal over l.

The restriction to consider events only at times in zl
transforms the continuous-time problem into a discrete one.
Given zl with m possible event times (zl,1, zl,2, . . . , zl,m), let
b = {bi}mi=1 be a set of binary variables, one per event, where
bi = 1 if event i is included in xl (otherwise bi = 0 and the
event is not included in xl). Thus sampling b is equivalent to
sampling xl (zl is known) as it specifies which events in zl
are in xl. Let Y i:jl be the portion of Y between times zl,i and
zl,j , and bi:j = {bk|i ≤ k ≤ j} We wish to sample b (and
thereby xl) from

p(b | Y ) ∝
(∏

i

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l )

)
p(Y m:∞

l | b)

(9)
where the final Y m:∞

l signifies all of the evidence after the
last virtual event time zl,m and can be handled similarly to
the other terms.

The most straight-forward method for such sampling con-
siders each possible assignment to b (of which there are 2m).
For each interval, we multiply terms from Eq. 9 of the form
p(Y i−1:i

l , bi | b1:i−1, Y 1:i−1
l ) =

p(Y i−1:i
l | b1:i−1, Y 1:i−1

l )p(bi | b1:i−1, Y 1:i
l ) (10)

where the first term is the likelihood of the trajectory interval
from zl,i−1 to zl,i and the second term is the probability
of the event being thinned, given the past history. The first
can be computed by tallying the sufficient statistics (counts
and durations) and applying Eq. 2. Note that these sufficient
statistics take into account b1:i−1 which specifies events for l
during the unobserved region(s), and the likelihood must also
be calculated for labels l′ 6= l for which λl′(t|h) depends on
events from l. The second term is equal to λl(t|h)

λ∗(t) if bi = 1

(and 1 − λl(t|h)
λ∗(t) if bi = 0). The numerator’s dependence on

he full history similarly dictates a dependence on b1:i−1.
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Fig. 9: Dotted events are the virtual events that we sample
as binary variables (bi is 1 if event i is kept). The state
diagram below the trajectory indicates the state of the test
as we diverge (keep or drop a virtual event). Though there
are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

This might be formulated as a naı̈ve FFBS algorithm: To
generate one sample, we propagate possible trajectories for-
ward in time, multiplying in Eq. 10 at each inter-event interval
to account for the evidence. Every time we see a virtual
event, each possible trajectory diverges into two (depending on
whether the virtual event is to be thinned or not). By the end,
we have all 2m possible trajectories, each with its probability
(Eq. 9). We sample one trajectory as the output, in proportion
of the calculated likelihoods. As we explicitly keep all possible
trajectories, the sampled trajectory immediately tells us which
virtual events are kept, so no actual backward pass is needed.

F. An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is not practical, as the number of
possible trajectories grows exponentially with the number of
auxiliary virtual events, m. We propose a more efficient state-
vector representation to only keep the necessary information
for each possible trajectory. The idea takes advantage of the
structure of the PCIM and leads to state merges, similar to
what happens in FFBS for hidden Markov models (HMMs).

The terms in Eq. 10 depend on b1:i−1 only through the
tests in the internal nodes of the PCIM trees. Therefore, we
do not have to keep track of all of b1:i−1 to calculate these
likelihoods, but only the current state of such tests that depend
on events with label l. For example, a test that asks “Is the last
event of label l?” only needs to maintain a bit as the indicator.
The test “Are there more than 3 events of label q in the last 5
seconds?” for q 6= l has no state, as b1:i−1 does not affect its
choice. By contrast, a test such as “Is the last event of label
q?” does depend on b, even if q 6= l.

As we propagate forward, we merge b1:i sequences that
result in the same set of states for all internal tests inside
the PCIM. See Fig. 9 as a simple example. Though there
are 8 possible trajectories, they merge to only 2 states that
we can sample from. Similar to the FFBS for an HMM, we
need to maintain the transition probabilities in the forward
pass and use them in a backward sampling pass to recover the
full trajectory, but such information is also linear.

Note that this conversion to a Markov system for sampling is
not possible in the original continuous-time system. Thinning
allowed this by randomly selecting a few discrete time points
and thereby restricting the possible state space to be finite.

The state space depends on the actual tests in the PCIM
model. See Tbl. I for the tests we currently support and their
state representations. The LastStateTest and StateTest are used
to support discrete finite variable systems, such as a CTBN.
We can see that for tests that only depend on the current time
(i.e. TimeTest), the diverging history does not affect them,
so no state is needed. For Markovian tests (LastEventTest
and LastStateTest), we only need a Boolean variable. For the
non-Markovian test (EventCountTest), the number of possible
states does grow exponentially with the number of virtual
events maintained in the queue. This is the best we can do and
still be exact. It is much better than growing with the number
of all virtual events. However, note that commonly lag2 = 0
and n is small. In this case, the state space size at any point
is bounded as

(
m′

n

)
, where m′ is the maximum number of

sampled events in any time interval of duration lag1 (which
is upper bounded by m). If n is 1, this is linear in the number
of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled event
(for example, we are sampling event l=A and the test is “are
there ≥ 3 B events in the last 5 seconds?”), the state of the test
is set to null. This is because the evidence and sampled values
for B (which is not the current variable for Gibbs sampling)
can answer this test without reference to samples for l.

See Alg. 1 for the algorithm description for resampling
event l. The complete algorithm iterates this procedure for
each event label to get a new sample. The helper function
UpdateState(s,b,t) returns the new state given the old state (s),
the new time (t), and whether an event occurs at t (b). Samp-
ProbMap(M) takes a mapping from objects to positive values
(M) and randomly returns one of the objects with probability
proportional to the associate value. AddtoProbMap(M,o,p)
checks to see if o is in M. If so, it adds p to the associated
probability. Otherwise, it adds the mapping o→ p to M.

G. Extended Example

Fig. 10 shows an example of resampling the events for label
A on the unobserved interval [0.8, 3.5). On the far left is
the PCIM rate tree for event A. Box (a) shows the sample
from previous iteration (single event at 2.3). Dashed lines
and λ show the piecewise-constant intensity function given
the sample. Box (b) shows the sampling of virtual events. For
this case λ∗ = 3 for all time. λ∗ − λ is the rate for virtual
events. The algorithm samples from this process, resulting
in two virtual events (dashed). In box (c) all events become
potential events. The state of the root test is a queue of recent
events. The state of the other test is Boolean (whether A is
more recent). On the bottom is the lattice of joint states over
time. Solid arrows indicate bi = 1 (the event is kept). Dash
arrows indicate bi = 0 (the event is dropped). Each arrow’s
weight is as per Eq. 10. The probability of a node is the sum
over all paths to the node of the product of the weights on the
path (calculated by dynamic programming). In box (d) a single
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TABLE I: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event of type A? Boolean Markovian
EventCountTest Are there ≥ n events of type A in

[t− lag1, t− lag2]?
A queue maintaining all the times of A between
[t− lag2, t], and the most recent n events between
[t− lag1, t− lag2].

Non-Markovian

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of var A=0? Null independent of b
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Fig. 10: Extended Example, see Section IV-G

Fig. 11: The toroid network and observed patterns [12].

path is sampled with backward sampling, shown in bold. This
path corresponds to keeping the first and last virtual events
and dropping the middle one.

V. EXPERIMENTS

A. ThinnedGibbs Validation

We perform inference with our method on both Markovian
and non-Markovian models, and compare the result with the
ground-truth statistics. For both we show our result converges
to the correct result. Ours is the first that can successfully
perform inference tasks for non-Markovian PCIMs.

1) Verification on the Ising Model: We first evaluate our
method, ThinnedGibbs, on a network with Ising model dynam-
ics. The Ising model is a well-known interaction model with
applications in many fields including statistical mechanics,
genetics, and neuroscience [8]. The model is Markovian and
has been tested by several prior inference methods for CTBNs.

Using this model, we generate a directed toroid network
structure with cycles following [12]. Nodes can take values −1

# of samples
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AuxGibbs

103102

100

10−1

10−2

10−3

Fig. 12: Number of samples versus KL divergence for the
toroid network. Both axes are on a log scale.

and 1, and follow their parents’ states according to a coupling
strength parameter (β). A rate parameter (τ ) determines how
fast nodes toggle between states. We test with β = 0.5 and
τ = 2. The network and the evidence patterns are shown in
Fig. 11. The network starts from a deterministic state: at t = 0
variables 1 − 5 are +1 and 6 − 9 are −1. At t = 1, variable
1− 3 have switched to −1, 4− 5 remain +1, and 6− 9 have
switched to +1. The nodes are not observed between t = 0 and
t = 1. We query the marginal distribution of nodes at t = 0.5
and measure the sum of the KL-divergences of all marginals
against the ground truth. We compare with the state-of-the-art
CTBN Auxiliary Gibbs method [38]. Other existing methodsG-9
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Algorithm 1: Resampling event l
input: The previous trajectory (xl,Yl)
output: The newly sampled x

′
l

for each unobserved interval for l do
Find piecewise constant λ∗(t|h) using Yl
Find piecewise constant λ(t|h) using xl, Yl
Sample virtual events vl with rate λ∗(t|h)− λ(t|h)

Let zl = xl ∪ vl, m = |zl|, and s0 be the initial state
AddtoProbMap(S0,s0,1.0)
for i← 1 to m do

for each {(si−1, ·)→ p} in Si−1 do
pkeep = p(Ei−1:i, bi = 1 | si−1, E1:i−1)
pdrop = p(Ei−1:i, bi = 0 | si−1, E1:i−1)

skeepi ← UpdateState(si−1, true, zl,i)
sdropi ← UpdateState(si−1, false, zl,i)
AddtoProbMap(Si,(s

keep
i , zl,i), p×pkeep)

AddtoProbMap(Si,(s
drop
i , ∅), p×pdrop)

AddtoProbMap(Ti(s
keep
i ), (si−1, zl,i), p×pkeep)

AddtoProbMap(Ti(s
drop
i ), (si−1, ∅), p×pdrop)

Update Sm by propagating until ending time
x
′
l ← ∅ and (s

′
m, t)← SampProbMap(Sm)

if t 6= ∅ then
x
′
l ← x

′
l ∪ {t}

for i← m− 1 to 1 do
(s
′
i, t)← SampProbMap(Ti+1(s

′
i+1))

if t 6= ∅ then
x
′
l ← x

′
l ∪ {t}

return x
′
l

either produce similar or worse results [3]. For example, the
mean field variational approach [8] produce error that is above
the error range of the methods we use. We vary the sample
size between 50 and 5000, and set the burn-in period to be
10% of this value. We run the experiments 100 times, and plot
the means and standard deviations.

Results in Fig. 12 verify that our inference method indeed
produces results that converge to the true distribution. Our
method reduces to that of [38] in this Markovian model.
Differences between the two lines are due to slightly different
initializations of the Gibbs Markov chain and not significant.

2) Verification on a Non-Markovian Model: We further
verify our method on a much more challenging non-Markovian
PCIM (Fig. 13). This model contains several non-Markovian
EventCountTests. We have observations for event A at t =
0.4, 0.6, 1.8, 4.7 and for event B at t= 0.1, 0.2, 3.4, 3.6, 3.7.
Event A is not observed on [2.0, 4.0) and event B is not
observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted
the system to a Markovian system. Note that because the time
since the last A event is part of the state, as the discretiza-
tion becomes finer, the state space increases. For this small
example, this approach is just barely feasible. We continued
to refine the discretization until the answer stabilized. The
ground-truth expected total number of A events between [0, 5]
is 22.3206 and the expected total number of B events is
11.6161. That is, there are about 18.32 A events and 6.62
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Is the most recent
event label B?

λB

λ = 1 λ = 5 λ = 1 λ = 10

Y N

N Y N Y N

Y N

Are there ≥ 1 A
events in [t-0.5,t)?

Is absolute time in the
first half of a time

unit?

Are there ≥ 1 A
events in [t-1,t)?

Is the most recent
event label B?
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Fig. 13: Non-Markovian PCIM and evidence. End time is 5.
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Fig. 14: Number of samples versus the inferred expected
number of events. The horizontal axis is on a log scale.

B events in the unobserved areas. Note that if the evidence is
changed to have no events these numbers drop to 1.6089 and
8.6866 respectively and if the evidence after the unobserved
intervals is ignored the expectations are 22.7183 and 8.6344
respectively. Therefore the evidence (both before and after the
unobserved intervals) is important to incorporate in inference.

We compare our inference method to the exact values, again
varying the sample size between 50 and 5000 and setting the
burn-in period to be 10% of this value. We ran the experiments
100 times and report the mean and standard deviation of
the two expectations. Our sampler has very small bias and
therefore the average values match the true value almost
exactly. The variance decreases as expected, demonstrating the
consistent nature of our method. See Fig. 14. We are not aware
of existing methods that can perform inference on this type of
model to which we could compare.

B. Experiments on Event Detection

We tested our proposed event detection approach on three
challenging datasets: Hollywood [25], UCLA office [39], and
PKU-MMD [28]. The Hollywood dataset is a human action
dataset from movies, the UCLA dataset is from a video cameraG-10
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TABLE II: Comparison of the event detection result on the
Hollywood dataset. In each cell, the first number is precision
and the second number is recall. Seg means the method
requires video pre-segmentation.

Events SVM(seg) Hoai[20](seg) SSM[7] Ours
AnswerPhone 0.62/0.30 0.64/0.32 0.64/0.43 0.62/0.50
HugPerson 0.46/0.29 0.46/0.29 0.51/0.33 0.45/0.35
Kiss 0.39/0.46 0.40/0.48 0.44/0.59 0.45/0.55
SitDown 0.36/0.35 0.36/0.36 0.39/0.38 0.41/0.40
Overall 0.45/0.34 0.47/0.36 0.50/0.42 0.48/0.45

recording students’ daily activities in an office, and the PKU-
MMD dataset is a recent large-scale benchmark dataset for
continuous multi-modal human action understanding.

1) Evaluation on Hollywood Dataset: The Hollywood
dataset focuses on realistic human actions including An-
swerPhone, Kiss, SitDown, HugPerson, StandUp, HandShake,
SitUp, and GetOutCar. This dataset has two disjoint subsets
with 219 video sample in the training set and 211 in the
test set. We follow [7] for the experimental setting: we only
focus on the first four classes to be recognized. Since the
dataset contains only pre-segmented clips, new video clips of
longer durations are created with enforced temporal relation-
ships. 1-order dependency (such as SitDown-AnswerPhone)
and 2-order dependency (such as HugPerson-Kiss-SitDown)
are inserted. 40 such video samples were formed (see more
details in [7]). To generate the visual sequences, we use
mean pooling of STIP features to generate a feature vector
for each 20-frame video segment, then use k-means (k is
fixed to 200 for this dataset) to assign a label to each of
the segment. For PCIM structure learning, we fix the bank
of possible PCIM tests as EventCountTests (see Tbl. I) with
(n, lag1, lag2) ∈ {1, 2, 3}×{2, 3, 4, 5, 6}×{0, 1, 2} (omitting
tests for which lag1 ≤ lag2) and LastEventTest for all high-
level and low-level event labels. We show some meaningful
learned dependencies in Tbl. IV. For each run, we set the
burn-in period to be 100 samples, and report the average
performance of the next 20 samples.

We compare with methods that require pre-segmentation
(linear SVM and [20]), as well as state-of-art method that
does simultaneous segmentation and labeling ([7]). Note that
results reported with pre-segmentation is biased since video
segmentation is very challenging itself (for this dataset, we
directly use the segments before concatenation). We perform
5-fold cross validation and the results averaged across 5 runs
are reported in Tbl. II.

Our approach shows competitive performance when com-
paring with state-of-art methods. Though SVM and Hoai[20]
are already reported on segmented videos, they still have
worse performance due to the local visual ambiguities in this
challenging dataset. Methods considering temporal context
(SSM[7] and ours) are able to produce better results. Our
approach is able to learn from the enforced temporal con-
straints and generate more reliable event candidates, leading
to a better overall recall. Also, SSM[7] relies on training
classifiers and doing inference at multiple scales and is more
computationally expensive. During inference, for each video,
our method generates 20 samples in less than a second,

TABLE III: High-level Event Types in the UCLA Office
Datasets.

ID Event Type ID Event Type
1 Enter Room 2 Exit Room
3 Sit Down 4 Stand up
5 Work on Laptop 6 Work on Paper
7 Throw Trash 8 Pour Drink
9 Pick Phone 10 Place Phone Down

TABLE IV: Examples of meaningful structures learned by
PCIM on the Hollywood and UCLA dataset. Time unit used
is 20 frames.

Structure Learned Semantics
if e3 in [t− 1, t) The ending of “SitDown” stimulates
rate of s1 = 0.67 “AnswerPhone”. (Hollywood)
if w57 is last event and Visual words in specific order
if w12 in [t− 1, t) stimulate “Kiss”. (Hollywood)
rate of s2 = 0.33
if s5 in [t− 2, t) The starting of “work on laptop”
rate of w3 = 0.68 tends to generate w3. (UCLA)
if s3 in [t− 5, t− 2) This encodes the duration distribution
rate of e3 = 0.7 of “sit down”. (UCLA)
if e5 in [t− 3, t− 1) The ending of “work on laptop”
rate of s4 = 0.22 stimulates “stand up”. (UCLA)

while the running time of our SSM implementation based on
LibSVM[4] is in the order of minutes.

2) Evaluation on UCLA Office Dataset: The UCLA office
dataset consists of 3 videos of a total length of 32 minutes,
in which actors perform 10 kinds of actions in an office
setting. See Tbl. III for the high-level events types and their
ID numbers. (We also use mean pooling of STIP features [24]
generated for each segment, but other methods are applicable.)

We perform 3-fold cross validation, using 2 videos for
training and 1 video for testing. We use 20 frames as the
segment length and 30 for the dictionary size (K). For PCIM
structural learning and sample size, we use the same setting
as in the Hollywood dataset. PCIM is able to learn 3 major
kinds of meaningful dependencies that are useful for the event
localization and labeling task. We show some examples in
Tbl. IV. It is the combination of these rules that encodes
complex dependencies in video.

We compare with state-of-art method that require pre-
segmentation [50]. This method also considers temporal de-
pendencies in a Conditional Random Field framework. Due to
the complexity of inference, this method can only encode de-
pendencies up to a fixed order. Pre-segmentation of dataset is
highly nontrivial and we notice it requires manual intervention.
Thus we used the segmented data from the authors of [50].
We also compare with an SVM-based approach that classifies
the video segments into one of the ten high-level events plus
the null event. After classification, consecutive segments of the
same labels are merged to one event. This method also relaxes
the necessity of video pre-segmentation, but only considers
local visual evidences.

We report the results in Tbl. V. Comparing with the
Hollywood dataset, this dataset contains real-world continuous
videos with natural high-order temporal dependencies. SVM-
based approaches can produce reasonable overall result for
this dataset. For this dataset, certain dimensions in the featureG-11
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vector are salient. For example, the extracted features contain
location information that is salient for this dataset because
the camera is static and certain events only happen at certain
locations (for example, “pour drink” always happen close to
the drinking machine.) SVM is able to get good result for
most event classes, and tends to confuse between certain pairs
of event types (i.e. “enter room” and “exit room”, “stand up”
and “sit down”, “work on laptop” and “work on paper”.) So
it is a strong baseline for the event detection task on this
dataset. [50] considers temporal dependencies and generate
better results. We observe that, since [50] considers fixed order
event dependencies, when there are null events happening
between actual events (which is common in real-world videos),
the learned dependencies may not be useful. Also, for datasets
with high order dependencies, this model can be limited. On
the other hand, PCIM explicitly models temporal dependencies
of arbitrary order and is able to skip null events.

We can see that, by taking advantage of the complex
temporal contexts, PCIM can produce the best precision by
correcting wrong labels. Note that the discretization of image
features and using uniform weights of different features (in
K-Means clustering based dictionary learning) tend to lose
some salient visual information. On dataset with larger intra-
class variance and without dominating salient visual features,
we expect PCIM to perform even better as visual evidences
alone are less useful.

For recall, PCIM tends to omit event types with few training
instances. PCIM can be treated as a data-driven approach and
needs sufficient data to learn meaningful structures for each
event types. For this particular dataset, events such as “pick up
phone” are very scarce in training data, so PCIM is not able
to learn meaningful structures for such event types. Then in
testing, these events tend to be missing. However, since these
are scarce events (also in testing data), missing them does
not significantly affect the overall performance. When there
is more data (such as videos from streaming surveillance that
could be hundreds of hours long), we expect PCIM to mitigate
such drawbacks as more instances are observed.

We show one example in Fig. 15 in which global temporal
context among high-level events help to produce better result.
In this example, SVM based approach tends to confuse the
events “sit down” and “stand up” by only looking at local
appearance information, because both events involve the actor
performing actions close to the chair. PCIM, on the other
hand, is able to get the correct result, by learning the temporal
context that, a person should not sit down again after he had
already sat down and been working on the laptop. Other typ-
ical cases that PCIM performs better involves differentiating
between events such as “enter room” and “exit room.”

3) Evaluation on PKU-MMD Dataset: The PKU-MMD

Work on laptop Stand Exit room Truth

Work on laptop StandSit Enter room SVM

Work on laptop Stand Exit room PCIM

Fig. 15: Temporal context information helps to recover wrong
detection by local discriminative methods. The slight time shift
for PCIM is due to its continuous-time nature.

samples respectively).
We use 20 frames as the segment length and 200 for the

dictionary size (K). We compare with methods using state-of-
the-art representations and temporal detection methods. Deep
RGB (DR) [43] represents videos using features derived from
the Temporal Segment Network (TSN). Raw skeleton (RS)
is also tested in the multi-modality benchmark, but note our
method only uses the videos as input. For temporal detection,
we use a three stacked bidirectional LSTM (BLSTM) [49].

We report the same metrics as in [28]: |I∩I
∗|

|I∪I∗| > θ, where
I ∩ I∗ denotes the intersection of the predicted and ground
truth intervals and I ∪ I∗ denotes their union. Mean Average
Precision (mAP) of different actions at different θ is evaluated.
We directly use the evaluation tool provided in the dataset.

We report the results in Tbl. VI. Comparing with state-of-
art methods that rely on more complex representations and
temporal detection method, our model can produce competi-
tive results by using RGB video input alone. Our method can
produce better results at all θ levels comparing to the deep
model using only RGB video input, it can also outperform
the multi-modality approach (DR + RS) at higher θ levels,
showing that our approach can more accurately localize events
in the temporal domain. It would be interesting to extend the
inference in point process for video event detection idea to
multi-modality input.

VI. CONCLUSION

We review PCIM and how it models nonlinear dependencies
in general event streams. We propose the first effective infer-
ence algorithm, ThinnedGibbs, for PCIM. Our auxiliary Gibbs
sampling method effectively transforms a continuous-time
problem into a discrete one. Our state-vector representation
of diverging trajectories takes advantage of state merges and
reduces complexity from exponential to linear for most cases.
Then we show how PCIM can be used to model temporal
context for event detection in video, and how event detection
can be modeled as an high-level event inference problem given
low-level observations. The formulation provides a generic
way to model temporal context in event streams and relaxes
the assumption of video pre-segmentation. It is also flexible in
terms of feature extraction and dictionary learning methods.

We then validate ThinnedGibbs on several tasks, including
sampling from complicated distributions with known statis-
tics and its effectiveness in video event detection. We show
our method generalizes the state-of-art inference method for

dataset is a recent large-scale dataset for human action under-
standing in long continuous video sequences. It contains over 
1000 long video sequences in 51 action categories, performed 
by 66 subjects in three camera views. In this work we focus on 
cross-subject evaluation. For fair comparison and evaluation, 
the same dataset partition setting as that in [28] was used, 
where the dataset is split into training and testing groups which 
consists of 57 and 9 subjects respectively (944 and 132 video
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TABLE V: Comparison of the event detection result on the UCLA office dataset. Seg means the method requires video
pre-segmentation. In each cell, the first number is precision and the second number is recall. See event types in Tbl. III.

Event ID 1 2 3 4 5 6 7 8 9 10 Overall
SVM 0.70/0.72 0.65/0.68 0.72/0.79 0.82/0.75 0.84/0.82 0.70/0.75 0.85/0.85 0.83/0.80 0.75/0.75 0.74/0.80 0.75/0.76
CRF[50] (seg) 0.90/0.85 0.90/0.82 0.76/0.76 0.74/0.78 0.84/0.81 0.66/0.70 0.65/0.80 0.72/0.75 0.82/0.81 0.84/0.86 0.79/0.79
Ours 0.95/0.87 0.92/0.84 0.83/0.78 0.79/0.80 0.83/0.80 0.70/0.68 0.65/0.76 0.70/0.72 0.74/0.61 0.75/0.58 0.81/0.77

TABLE VI: Mean Average Precision (mAP) comparison of
the event detection result on the PKU-MMD dataset.

Method θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7
DR + BLSTM 0.617 0.439 0.221 0.051
DR + RS + BLSTM 0.675 0.498 0.255 0.050
Ours 0.650 0.510 0.294 0.065

CTBN models. We also validate our inference idea on non-
Markovian PCIMs, which is the first to do so. Then we show
that the modeling of temporal context with PCIM can improve
event detection performance in real-world continuous video.
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W. Kraaij, and G. Quénot. Trecvid 2014–an overview of the goals, tasks,
data, evaluation mechanisms and metrics. In Proceedings of TRECVID,
2014.

[31] A. Parikh, A. Gunawardana, and C. Meek. Cojoint modeling of temporal
dependencies in event streams. In UAI Workshops, 2012.

[32] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked
Fisher vectors. In ECCV, 2014.

[33] O. P. Popoola and K. Wang. Video-based abnormal human behavior
recognition : A review. In IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 2012.

[34] R. Poppe. A survey on vision-based human action recognition. In Image
and Vision Computing, 2010.

[35] Z. Qin and C. R. Shelton. Auxiliary Gibbs sampling for inference in
piecewise-constant conditional intensity models. In UAI, 2015.

[36] S. Rajaram, T. Graeoel, and R. Herbrich. Poisson-networks: A model
for structured point process. In AIStats, 2005.

[37] V. Rao and Y. W. Teh. Fast MCMC sampling for Markov jump processes
and continuous time Bayesian networks. In UAI, 2011.

[38] V. Rao and Y. W. Teh. Fast MCMC sampling for Markov jump processes
and extensions. Journal of Machine Learning Research, 14:3207–3232,
2013. arXiv:1208.4818.

[39] Z. Si, M. Pei, B. Yao, and S.-C. Zhu. Unsupervised learning of event
and-or grammar and semantics from video. In ICCV, 2011.

[40] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure
for complex event detection. In CVPR, 2012.
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Appendix H

Hawkes Process Inference with
Missing Data

To appear as

Christian R. Shelton, Zhen Qin, and Chandini Shetty. Hawkes Process Inference with Missing
Data. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

140
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Hawkes Process Inference with Missing Data

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Zhen Qin
University of California, Riverside

zqin001@cs.ucr.edu

Chandini Shetty
University of California, Riverside

cshet001@cs.ucr.edu

Abstract

A multivariate Hawkes process is a class of marked point
processes: A sample consists of a finite set of events of un-
bounded random size; each event has a real-valued time and a
discrete-valued label (mark). It is self-excitatory: Each event
causes an increase in the rate of other events (of either the
same or a different label) in the (near) future. Prior work has
developed methods for parameter estimation from complete
samples.
However, just as unobserved variables can increase the model-
ing power of other probabilistic models, allowing unobserved
events can increase the modeling power of point processes. In
this paper we develop a method to sample over the posterior
distribution of unobserved events in a multivariate Hawkes
process. We demonstrate the efficacy of our approach, and its
utility in improving predictive power and identifying latent
structure in real-world data.

Marked Point Processes
Many applications work with records of events and their
times: social networks (information propagation or network
changes), computer systems (system calls, hardware failures,
network events), global politics (treaties, armed conflicts), as
examples. The times are real-valued, and the event types (or
labels or marks) are drawn from a finite set.

The general class of marked point processes (MPPs) pro-
vide families of distributions over such data. The Poisson
process is the simplest and most familiar, but the event sets
from any two non-overlapping intervals of time are indepen-
dent, and thus it does not provide strong modeling power.
More complex MPPs include Cox processes and Poisson
cluster processes.

In machine learning, a variety of structured MPPs have
been developed including Poisson-networks (Rajaram, Grae-
pel, and Herbrich 2005) and piecewise-constant conditional
intensity models (PCIMs) (Gunawardana, Meek, and Xu
2011). We concentrate on Hawkes processes (Hawkes 1971).
They have been used in earthquake modeling (Marsan
and Lengliné 2008), finance (Linderman and Adams 2014;
Bacry, Mastromatteo, and Muzy 2015), social networks
(Simma and Jordan 2010; Zhou, Zha, and Song 2013;
Perry and Wolfe 2013; DuBois, Butts, and Smyth 2013),

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

influence maximization (Du et al. 2013), armed conflicts
(Blundell, Heller, and Beck 2012; Mohler 2013; Linder-
man and Adams 2014), and topic modeling (He et al. 2015;
Guo et al. 2015; Du et al. 2015).

Hidden (unobserved) variables are an essential modeling
tool. They can simplify a model, be used to find hidden
structure, or express the modeler’s prior knowledge. Previous
uses of Hawkes processes have used complete event data: all
event times are observed. This paper expands the modeler’s
toolkit by allowing partially and fully unobserved events
types. This allows hypothesizing about events associated
unobserved actors, communication paths, servers, or other
variables. It also allows the full use of datasets in which actors
enroll or dropout at various times.

For example, we can add unobserved (but modeled) ac-
tors in a social network event process. Or, we can allow for
periods of non-observation of known actors (for instance,
prior to enrolling in a study). Unobserved events in other
arenas might correspond to weather, news, or political events.
More generally, a Hawkes process between two event-types,
A and B, allows for each to self-excite or to excite the other
event-type, producing clusters of events that stem from a
single seed event of one type. However, if we add a third
type, C, and postulate that the observed times of events for A
and B result from the marginalization of a Hawkes process
over all three event types, this provides a richer model of the
relationship between events of types A and B, which includes
relationships where A and B do not trigger each other, but
both are temporally correlated (through type C).

We consider the situation in which the set of possible labels
(types of events) is known. Yet, for some labels for some
periods of time, it is known that any events during that time
were unobserved (and during other times, all occurring events
for this label were observed). This allows for completely
hidden event types, as well as masking certain types during
certain time intervals.

While other applications placed priors on the parameters
of the Hawkes process or other parts of the model and used
Gibbs sampling (or similar) over these parameters (Linder-
man and Adams 2014; Rasmussen 2013), no work to date has
considered unobserved events to the extent that we do in this
paper. Yang and Zha (2013) used mixtures of Hawkes pro-
cesses and developed a variational inference method. How-
ever, all events were observed; only their assignments to
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mixture components were not. Xu, Luo, and Zha (2017) con-
sidered the situation in which all events prior to a specific
time are unobserved (left censoring), which is a very specific
case of the missingness patterns we allow. Finally, if there
are no observed events of any labels and the process has an
exponential kernel, a closed-form solution exists (Du et al.
2013). However, no general closed-form solution is known
for the evidence patterns we consider here.

Contributions
A likelihood-weighted sampler is natural and straight-
forward. However, as we demonstrate in our results, it does
not perform well in complex tasks. Therefore, we develop a
Markov chain Monte Carlo (MCMC) method using auxiliary
variables. The auxiliary variables are not only the hidden
“chain” of events, which have been considered previously
in Hawkes processes, but also additional “thinned” events,
adapted from previous samplers for other classes of MPPs
(Rao and Teh 2011; 2013; Qin and Shelton 2015). This novel
combination is an efficient sampler that performs well in all
tested scenarios.

We show the advantage of being able to hypothesize un-
seen events on real-world data. In particular, we demonstrate
that, on gang homicides in Chicago, the addition of hidden
labels improves prediction accuracy and reveals structure in
the data that cannot be extracted without hidden events.

Multivariate Hawkes Process Background
We assume that the process begins at time t0 = 0 and ends
at time T . A (complete) sample from the process can be rep-
resented as x = {(t1, l1), (t2, l2), . . . , (tn, ln)} where there
are n events (a random quantity) and, for notational conve-
nience, we will let tn+1 = T (although there is no event at
T ). ti−1 < ti,∀i and thus ti is the time of the ith event, and li
is the label (mark) of the ith event. Without loss of generality,
we assume that the labels are drawn from the set of integers
{1, 2, . . . , L}. We let ht = {(ti, li) ∈ x | ti < t} or the
set of all events and labels prior to time t, analogous to the
natural filtration for the process. For notational convenience,
we let It = {i | ti < t}, or the set of event indices that
occurred before t (also the set of event indices in ht).

A general discrete-label MPP can be specified through
the intensity function λl(t, ht) which is the rate of an
event of label l at time t and is a function of the ab-
solute time, as well as the history of events up to time
t: λl(t, ht) = limδt→0 Pr(event of label l in [t, t+ δt) |
t, ht)/δt. The probability density of sample x is

p(x) = exp

(
−
∑

l

∫ T

0

λl(s, hs) ds

)
n∏

i=1

λli(ti, hti) .

(1)
A (linear) multivariate Hawkes process specifies

λl(t, ht) = µl +
∑
i∈It φli,l(t − ti) where µl is the base

rate of events of label l and φl,l′(t), the kernel or transfer
function, is the increase in the rate of label l′ due to an event
of label l t time units ago. We can simplify this to

λl(t, ht) =
∑

i∈I0t

φli,l(t− ti) (2)

l=1

l=2

l=3
0.0 3.02.01.0 t

Figure 1: A sample from a multivariate Hawkes process, in
black. The green dashed arrows show one possible sampling
tree (the arrows point to the parents). Arrows pointing to
nowhere indicate that the event was generated by the base
rate (root event, l = 0).

if we add a special event at t0 (a time not previously associ-
ated with an event). In particular, let l0 = 0 (a new special
label), let I0t = It∪{0}, and set the kernel for this new label:
φl,0(t) = 0,∀l and φ0,l(t) = µl,∀l > 0. This event “causes”
the base rate of events for each label. For notational compact-
ness, we will assume the kernel has been so redefined.

If we denote Φl,l′(t) =
∫ t
0
φl,l′(s) ds and Φl,?(t) =∑

l′ Φl,l′(t), Equation 1 for a Hawkes process is

p(x) = exp

(
−
∑

i

Φli,?(T − ti)
)∏

i

∑

j∈I0ti

φlj ,li(ti − tj).

(3)

Kernels
Multivariate Hawkes processes are usually defined in terms
of a base kernel, φ(t), and an L× L matrix of non-negative
values, M : φl,l′(t) = Ml,l′φ(t). In systems with a large
number of labels, M is usually sparse: Each event label only
excites a small subset of other event labels. The two most
common base kernels are the exponential (with parameter
β > 0): φ(t) = e−βt and the power-law (with parameters
β > 0 and γ > 0): φ(t) = (t + γ)−(1+β). The process is
well behaved (with probability 1 there are a finite number of
events on any finite interval of time) if λ

∫∞
0
φ(s) ds < 1,

where λ is the largest eigenvalue of M (Bacry, Mastromatteo,
and Muzy 2015).

If the base kernel is an exponential, the resulting process
can be viewed as a Markovian process over a continuous
vector-valued state space (essentially tracking the sum of
φl,l′(t) over all previous events), see Oakes (1975) and Propo-
sition 2 of Bacry, Mastromatteo, and Muzy (2015) for more
details. This can reduce the running time of sampling or like-
lihood sampling (but not our MCMC sampler). We used this
improved method for exponential kernels in our experimental
results, but otherwise the details are not relevant and are left
for the supplementary material.

Unconditional Sampling
The Poisson superposition principle states that the union
of events from two independent Poisson processes is itself
a Poisson process whose rate function is the sum of the
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rate functions of the two underlying processes. Equation 2
shows the rate as the sum of independent rates (one for each
past event). Each event generates a set of children events
independently (at time t the rate of an event is the sum of the
rates of any previous event generating a child at time t). This
view of a Hawkes process is well established (Hawkes and
Oakes 1974) and critical to the development of our sampler.

The sampling algorithm can therefore be recursive in na-
ture. We start with the special label 0 at time 0 and pro-
ceed until time T , sampling “children” events from the
base rates. Each of these children recursively generates its
own events from the kernel rate function. An event (t, l)
generates a set of events independently for each other la-
bel l′ from the inhomogeneous Poisson process with rate
λ(t′) = Ml,l′φ(t′ − t),∀t′ > t.

This recursive structure forms a tree of events; each event
has a parent whose kernel rate function was used to generate
it. Figure 1 show one possible sample, along with the (nor-
mally discarded) information about which events recursively
generated which other events in dashed green.

Posterior Sampling
Our goal is to reason about the distribution of such a process,
conditioned on observations of the events for only some
labels over some intervals of time. That is, we assume that
we observe all elements of x that fall within certain observed
label-time ranges.

We let the observational evidence, z = (z(x), z(o)),
be such a partial sample which specifies the events dur-
ing certain time intervals for certain labels. z(x) =
{(t1, l1), . . . , (tm, lm)} is the set of observed events (z(x) ⊆
x), analogous to x, but specifying m ≤ n events. z(o) =
{(rs1, re1, l1), . . . , (rsk, r

e
k, lk)} specifies k observed intervals.

In particular, the ith element of z(o) specifies that all events
of label li on t ∈ [rsi , r

e
i ) were observed. We assume the data

are missing at random: z(o) ⊥ x. We let z(o)l denote the
union of the intervals over which label l is observed.

Our goal is to estimate p(x | z). Note that while the un-
conditional sampler could sample each set of children inde-
pendently, conditioned on evidence, these samples are no
longer independent. The conditional process p(x | z) is not a
Hawkes process.

Markov Chain Monte Carlo
A likelihood-weighted sampler is straight-forward (just re-
strict the sample generation to agree with the evidence), but
(as shown later), this method does not perform well on prob-
lems of even moderate size.

Auxiliary Variables We use Metropolis-Hastings sam-
pling (Metropolis et al. 1953; Hastings 1970) on the tree
representation of the unconditional sampler from above. For
an effective MCMC sampler, we introduce two sets of auxil-
iary variables.

The first auxiliary variable set records the parent structure
of the recursive, generational view of a Hawkes process (the
green arrows in Figure 1). This set has been used in prior work
(Veen and Schoenberg 2008; Marsan and Lengliné 2008) to

l=1

l=2

l=3
0.0 3.02.01.0 t

Figure 2: An example sample from the full MCMC process
given missing data: Label 2 is unobserved until time 2.4 and
label 3 is unobserved from time 1.6 until time 2.5. Black
events are x (evidence are solid, sampled are dashed). The
parent auxiliary variables, a and ã, are in green. The virtual
events, x̃, are in orange.

estimate the parameters of a Hawkes process with complete
data using expectation-maximization.

The second auxiliary variable set consists of “virtual
events,” potential (but not realized) times for events, similar
to those used for continuous-time Markov processes (Rao
and Teh 2011; 2013) and PCIMs (Qin and Shelton 2015).
The virtual events are fast to generate (as they are not part of
the evidence) and provide a finite number of potential events
to turn into a real event (through a sampler move). They are
resampled (through other sampler moves) to allow for po-
tentially any real-valued event time. In this way, the times
for posterior events that might couple two observed events
can be search efficiently without considering the uncountably
infinite number of potential event times.

While each type has been used before, they have not pre-
viously been used together. The parent auxiliary variables
allow for a decoupling of the likelihood (much like mixture-
assignment variables in clustering). And, the virtual events
are needed to change the dimensionality of the sampling
space in a computationally simple fashion. Together, they
allow us to tackle Hawkes processes with unobserved events,
which no previous sampling method has addressed.

Parent Auxiliary Variables Let a = {a1, . . . , an} where
ai is the index of the parent of event with index i. If we
keep track of this information, the unconditional sampler
(from above) can be seen as generating samples from p(x, a),
whose marginal p(x) is the desired prior distribution (that
is, if we throw away the green arrows in Figure 1 we have a
sample over labels and times). For notation, let ci,l denote the
children of event i that have label l: {(tj , l) ∈ x | aj = i}
and ci =

⋃
l ci,l. The joint distribution over x and a has only

multiplicative terms:

p(x, a) =
∏

i

φlai
,li(ti − tai) exp (−Φli,?(T − ti)) .

It is straight-forward to show that
∑
a p(x, a) = p(x) (see

Equation 3).

Virtual Event Auxiliary Variables These virtual events
are potential (but not realized) children for each of the real
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events (and the special “root event”). They do not generate
their own children (real or virtual) and are not part of x. Let
x̃ = {(t̃1, l̃1), . . . , (t̃ñ, l̃ñ)} denote the set of virtual events.
Let ãi denote the index of the parent (a real event) of the ith
virtual event. Let c̃i,l and c̃i, be analogous to ci,l and ci, but
for the ith virtual event.

The unconditional Hawkes process generates events in ci,l
from a Poisson process with rate φli,l(t−ti). Our distribution
including the auxiliary variables generates the events in c̃i,l
from a Poisson process with rate κ · φli,l(t− ti). Therefore,
unconditioned on evidence, by the Poisson superposition
principle, the events in ci,l ∪ c̃i,l are drawn from a Poisson
process with rate (κ+1) ·φli,l(t− ti). Furthermore, given an
event is from this union, it is a virtual event with probability
κ/(κ+ 1), regardless of its time.

Complete Joint Process Our total auxiliary process is over
x, a, x̃, and ã. Its marginal over x is the same as the original
multivariate Hawkes process. Its joint is

p(x, a, x̃, ã) =
n∏

i=1

exp [−(κ+1)Φli,?(T−ti)]

×
n∏

i=1

φlai
,li(ti−tai)

ñ∏

i=1

κ · φlãi
,l̃i

(t̃i−tãi) .

(4)

MCMC Sampler Figure 2 shows a sample from this pro-
cess. We build an MCMC sampler over the dashed items in
this figure: events in x that are in the unobserved periods, a
and ã (the parent sets of all events), and x̃. We constrain x̃
to also only contain events in during the unobserved periods
to reduce computation time because virtual events during an
observed period can never become real.

Our sampler maintains a state of x, a, x̃, and ã. There are
four types of events: the root event (label 0), evidence events,
sampled events, and virtual events. The first three are mem-
bers of x and the last of x̃. The root and evidence events
cannot be changed, but all of the other variables can. At each
iteration of the sampler, we pick an event uniformly at ran-
dom from x ∪ x̃. We then select one of the following three
“moves” uniformly at random. If the move does not apply
to the event, we consider it a self-transition in the Markov
chain.

Move 1: Virtual Children This only applies to events
from x. Let the event have index i. For this move, we consider
replacing the current set c̃i with a new set, c̃′i drawn from
a Poisson process with rate κ · φli,l(t − ti). This changes
the dimension of the distribution (by adding new or remov-
ing variables in x̃ and ã). However, these new variables are
sampled without regard to the current state of the process,
and therefore the “Jacobian” correction from reversible-jump
MCMC is 1 for this case (Green 1995). This is the only type
of dimension-changing move (also used as part of the other
moves).

Move 2: Virtualness Assume the event is the pair (t, l). If
the event is virtual, we propose changing it to be real (moving
it from x̃ to x) and sampling a set of virtual children as in
Move 1. The likelihood ratio corresponds to moving a term
from the second product to the first product in Equation 4,
times the probability of sampling these new virtual children.
This second part cancels with the proposal likelihood (same
as above). Again, we have a correction ratio corresponding
to the change in the number of events.

If the event is not virtual, to assure reversibility, we only
propose a change if it is neither the root nor an evidence event,
and if it has no non-virtual children. In this case, we propose
moving it from x to x̃ and removing its virtual children from
x̃.

Move 3: Parent This move only applies to non-root events
from x. Resampling parents from among x is straight-forward
but misses the gains possible by allowing evidence (or sam-
pled events) to “reach back” and suggest possible events
earlier in the timeline. Therefore, we allow virtual events
to be selected as parents. If one is, it becomes real, and we
sample virtual children for this new parent.

While local parent changes are appealing (they can be pro-
posed in constant time), they are difficult to make reversible
because they might insert virtual events between the old
and new parent, thus rendering the reverse move non-local.
Therefore, we sample a new proposed parent from any event
earlier in time. Let the event whose parent is to be resam-
pled be (t, l); let h̃t be all previous virtual events; and let
Ht = ht ∪ h̃t. We propose (t′p, l

′
p) ∈ Ht as the new parent

with probability proportional to w(t′p, l
′
p) = φl,l′p(t − t′p).

If (t′p, l
′
p) ∈ x̃, then our proposal includes moving it to x

and sampling (as in Move 1) new virtual children for it, c̃′.
If the proposed change would leave the old parent with no
real children and it is not the root event, then we propose to
change the old parent to be virtual (and remove its children)
with probability κ/(κ+ 1).

The moves were designed, for the most part, to simplify
the acceptance ratios. The exact form of the ratios are straight-
forward, but tedious to derive. We leave them to the supple-
mental material.

Synthetic Data Experiments
For evaluation, we used an exponential and a power-law
kernel. We generated two different sizes of problems, each
in an “easy” and “hard” version. We then tested the time-
accuracy trade-offs of the base likelihood weighting and our
MCMC method on each of these eight combinations.

Because the algorithms are samplers, estimating the expec-
tation of any function of the sample is possible. We chose the
number of events for a particular set of labels because this
query is simple and directly related to the average posterior
rate, which is important in kernel parameter estimation.

We chose the exponential kernel with β = 1 and the power-
law kernel with β = 1 (inverse squared decay) and γ = 1,
so they integrate to the same quantity. The power-law kernel
has a heavier tail, however, and so more of its power will
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Figure 3: Results on synthetic problems. Both likelihood weighting (LW) and our MCMC sampler perform well on easy problems.
LW fails on hard problems, while our MCMC sampler continues to performs well. LM3 is a limited version of “move 3.”

fall after time T . We describe the small and large synthetic
problems in more detail in the supplementary material. The
small problems consist of chains of labels (each affecting
the next one or two). The large problems consist of labels
connected via a graph with a power-law degree distribution.
All problems have evidence on approximately half of the
labels.

Methods

Each combination of kernel, problem size, and problem dif-
ficulty fixed a particular input process, evidence, and query.
We chose 16 geometrically evenly spaced computation times
and independently ran the algorithms 200 independent times
for each of these computation times, stopping the sampling
when the algorithm had reached the computational time limit.
For the MCMC method, this computational budget included
the burn-in time, which we set to be 1000 iterations for the
easy problems and 5000 iterations for hard problems.

Running for a fixed computational time, instead of a fixed
number of iterations, can bias the resulting estimator toward
samples with smaller numbers of events (because they take
less time, generally, to generate). However, our experience
did not show this was a factor in these experiments.

For each problem and computational budget, we used the
200 estimates to compute the mean squared relative error (the
relative variance). We computed the true values by running
the MCMC sampler for 5 hours. Both sampling algorithms
can be easily parallelized, but, so as not to complicate the
comparison, we ran all experiments on a single core. The
single tunable parameter is κ. We set it to 1, following the
methodology of similar samplers (Rao and Teh 2011; Qin
and Shelton 2015). We illustrate the effect of changing κ on
the small-easy problem. We also tried removing the ability
of the MCMC “move 3” to select a previously virtual parent
and illustrate its effect on the hard problems (limited move
3).

Problem MCMC LW
diff size kernel samp/sec samp/sec eff/sec

E S exp 3.32× 106 4.67× 105 2.02× 103

E S pow 2.84× 106 5.71× 105 4.17× 103

E L exp 8.65× 105 8.53× 102 1.87× 102

E L pow 7.66× 105 9.58× 102 4.34× 102

H S exp 5.61× 105 1.23× 104 0.30
H S pow 7.14× 105 1.75× 104 0.16
H L exp 3.51× 105 1.04× 102 0.15
H L pow 2.12× 105 1.83× 101 0.22

Table 1: Generation speed statistics for both algorithms. Col-
umn samp/sec lists the average number of samples taken per
second (a single step for MCMC and a full sample for LW).
Column eff/sec lists the effective number of samples for LW
(the average effective sample size across all runs with the
longest runtime).

Results
Figure 3 shows the accuracy-time trade-off for the algo-
rithms. On the easy problems (Figure 3, left), both algo-
rithms perform well. The likelihood weighting method has
fewer samples and many fewer effective samples, measured
as (
∑
i wi)

2/
∑
i w

2
i , see Table 1. However, the performance

suggests this is compensated by the independence of each
sample, unlike MCMC. For the small instance, we also show
the very small effect of changing κ to 4. We found similarly
small differences for adjustments of κ between 0.5 and 8 for
all of the experimental designs tested.

On the hard problems (Figure 3, right), things are different.
Our MCMC method performs well with expected O(1/n)
reduction in variance. The exponential kernel for the small
problem requires more than the provided burn-in time (a full
burn-in is not always possible in 0.01 seconds, hence the
missing point). Thus, the O(1/n) behavior does not start
until after 1 second. If we remove the ability of the MCMC
sampler to select a previously virtual event as a parent (lim-
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Figure 4: Results for crime data, without hidden event types (top) and with hidden event types (bottom). Background region color
on left map shows the (area-normalized) background rates (µ) of the estimated model. Estimated model network (M ) shown in
three ways: (left) as super-imposed on map with arc darkness proportional to weight in M , (middle) as a filtered graph, laid out
to demonstrate automatically found clusters, and (right) the same clusters shown geographically.

ited move 3), the performance degrades when there are more
events and the base rate is small, and therefore it does not
naturally generate real events. This can be seen in the small
hard problem with an exponential kernel. Note that adding
this ability never hurts the performance.

The likelihood weighting performs terribly on the hard
problems. We do not even see the expected O(1/n) perfor-
mance. This is because very few samples with any signifi-
cant weight are generated as seen in Table 1 in the “eff/sec”
column. While the bias and variance of this estimator do
decrease as O(1/n), 200 runs is not sufficient to demonstrate
this effect. Almost never, in all of the 200 runs and all of the
samples taken in each of these runs, does the sampler gener-
ate a sample that is even remotely likely under the posterior
distribution.

All sampling code exploits the sparsity of M .

Crime Data Experiments
To demonstrate the utility of unobserved variables, we used
homicide data provided by the Chicago Police Department
from 1965 through 1995 (Block, Block, and Illinois Criminal
Justice Information Authority 2005) filtered to only those
events reported to be gang-related. This follows the same
methodology as Papachristos (2009). We treat each gang-
related homicide as an event with a label corresponding to
the community area in which it occurred. There are 77 differ-
ent Chicago communities identified in the dataset and 2195
events. We did not supply any proximity information about

the regions to the model or algorithm.
While a self-excitatory process would seem to be a good fit

to gang-related homicides, previous uses of a plain Hawkes
process failed to find structure in the data. Others have used
a Hawkes process as part of a more complex model to find
structure. For instance, Linderman and Adams (2014) placed
hierarchical priors over the parameters to produce a clustering
of communities. We show that using a plain Hawkes process
with unobserved event types (labels) will also find structure,
and does better at prediction, relative to a plain Hawkes
process.

Methods
We first used a Hawkes process with an exponential kernel to
model the 77 fully observed labels (one for each community
of Chicago). Because there are no missing data, our sampling
method reduces to sampling over the latent generational struc-
ture (a). We use this as the expectation step in a Monte Carlo
expectation maximization procedure (Wei and Tanner 1990)
to estimate the parameters: M (matrix of inter-label weights),
β (decay rate of kernel), and µ (vector of base rate for each
label). We included an L1 regularizer on the elements of M
with strength set via a search over powers of 10. We let κ = 1
in our sampler. For the maximization step, given a collection
of samples and β, M and µ can be solved in closed form (see
supplementary material). We use a 1-dimensional line search
to find β. This method is essentially the same as previous EM
methods for Hawkes processes with fully observed labels
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Figure 5: The strength of connection to (in green) geographic labels and from (in blue) geographic labels each of the five hidden
event labels.

but hidden branching structure (Veen and Schoenberg 2008;
Marsan and Lengliné 2008).

To demonstrate the advantage of hidden events, we re-
peated the same process, but with five extra process labels,
each completely unobserved. These can be viewed as missing
variables (event sequences) with unspecified semantics. They
can be used by the (unaided) learning procedure to simplify
the structure, similar to how hidden variables in a Bayesian
network can simplify the distribution’s representation. Note
each hidden event type is not a single scalar random variable,
but rather a full (unobserved) sequence of event times.

These processes are allowed arbitrary connections with
each other and the 77 observed labels. To encourage their use
in the model, we clamped the elements of M corresponding
to connections between two observed labels to 0 for the first
half of the EM iterations.

Finally, we reran the models, training only on crimes from
1993 and 1994. We then tested on the last year of data (1995),
advancing time one event at a time and predicting the location
of the next event (the time of the next event is almost always
in the next zero to three days not not interesting to estimate).
There are 215 events in 1995 on 171 different days. We
credited a model if the region with the highest probability
of having the next event corresponded to any of the regions
with an event on that day. We used our MCMC method to do
the forecasting.

Results
The prediction accuracy for the model with five hidden event
types was 22% higher (6.5% versus 5.3%). However, more
interesting was the hidden event model’s ability to capture
sociological structure in the data.

The EM algorithm was very stable, producing very simi-
lar results on multiple runs, despite different starting values
and random seeds. The resulting β value is 1

28.6 days for the
model with no hidden event types and 1

48.2 days for the model
with hidden event types. The M and µ values are shown in
Figure 4. The result is messy (despite tuning the regulariza-
tion) and thus consistent with previous attempts. The network
among the observed variables is slightly sparser for the model
with hidden event types, but it is hard to tell from this fig-

ure. We clustered the regions (see supplemental material for
method) to try to find meaningful clusters, shown in Figure 4.
While some are geographically reasonable, they do not reflect
the major connectivity of the model.

Yet, the hidden event connections of the model with 5 hid-
den labels do directly reveal known gang-related structure.
Figure 5 shows the connections in M to and from the five
hidden labels. Each plot, therefore, shows regions (in blue)
that tend to get “triggered” together (from the same hidden
event) and regions (in green) that tend to trigger these hidden
events. These results correlate well with previous studies.
Block and Block (1993) mapped out Chicago gang crime in
the late 1980s. Neither the base rates of models nor clustering
of the M matrix (Figure 4) identify the gang areas in south
Chicago. However, two of our hidden label connections, Fig-
ure 5 (c,d), identify the primary areas in south Chicago also
noted in Exhibit 1 of Block and Block (1993). The cluster
in Figure 5(b) matches the first cluster (that of highest crime
rate) identified by Linderman and Adams (2014). Further, the
“Street Gang Turfs” of 1991 highlighted in Exhibit 4 of Block
and Block (1993) are also identified in Figure 5(e).

Summary
The code for general inference in Hawkes processes with
optional parallelization, as well as the wrapper code to run
the exact experiments done here and gather the results will
be supplied in a public GitHub repository.

We developed a reversible-jump MCMC sampler for
Hawkes processes. It allows the use of hidden event types
in Hawkes processes, providing flexibility to modelers. We
demonstrated the utility of such hidden events by using them
to more accurately predict locations, and to find meaningful
clusters of regions in Chicago crime data.
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List of Symbols, Abbreviations, and
Acronyms

Term Explanation

AUROC Area under receiver operating characteristic
AuxGibbs Auxiliary Gibbs sampler
BDD Binary decision diagram
BST Binary search tree
BTF Brightness transfer function
CIM Conditional intensity model
CHLA Children’s Hospital Los Angeles
CT-NOR Continuous-time noisy or
CTBN Continuous-time Bayesian network
CTBN-RLE Continuous-time Bayesian network reasoning and learning engine
CTMP Continuous-time Markov chain
CPU Central processing unit
CRF Conditional random field
DAT Data association-based tracking
DBN Dynamic Bayesian network
EHR Electronic health record
EM Expectation-Maximization
EV∗MDD Edge-valued matrix decision diagram
FFBS Forward filtering, backward sampling algorithm
GPU Graphics processing unit
HCI Human-computer interaction
HMM Hidden Markov model
HP Hawkes process
HSV Hue-saturation-value
ICU Intensive care unit
LSTM Long short-term memory
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
MIL Multiple instance learning
MIMIC Medical information mart for intensive care
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Term Explanation

MJP Markov jump process
MPP Marked point process
MTBDD Multi-terminal binary decision diagram
MTGP Multi-task Gaussian process
PCIM Piecewise-constant conditional intensity model
PDB Protein data bank
PIM Pediatric index of mortality (score)
PRISM Pediatric risk of mortality (score)
RNN Recurrent neural network
ROC Receiver operating characteristic
SAPS Simplified acute physiology score
SVM Support vector machine
TOP Time-ordered products
TTOP Tree of time-ordered products
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